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Theoretical marginal profile estimation 
using turn-by-turn kicked beam centroid data



kicked beam centroid in normal form
 Time evolution of the 2D canonical variables in normal form read

 TBT(turn-by-turn) beam centroid data is function of initial (before kick) 
beam distribution

We may able to reconstruct beam phase-space using a BPM

𝑥𝑥 𝑡𝑡 − 𝑖𝑖𝑖𝑖 𝑡𝑡 = 𝑥𝑥0 − 𝑖𝑖𝑖𝑖0 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 = 2𝐽𝐽0𝑒𝑒𝑖𝑖 𝑖𝑖𝑖𝑖−𝜃𝜃

𝜔𝜔 𝐽𝐽0 , 𝐽𝐽0 = 𝑥𝑥02 + 𝑖𝑖02 /2

𝑥𝑥 𝑖𝑖 = ℜ∫ 𝑥𝑥 − 𝑖𝑖𝑖𝑖 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝜌𝜌 𝑥𝑥 − 𝑥𝑥0,𝑖𝑖 − 𝑖𝑖0 𝑑𝑑𝑥𝑥𝑑𝑑𝑖𝑖



illustration of nonlinear decoherence
(due to phase mixing)

kick



Theoretical estimation of 
the marginal beam profile

 If assume
1. slowly varying betatron frequency over the beam area s.t.

2. large kick strength s.t.

Marginal beam profile (along the kick angle) can be analytically 
expressed

𝐽𝐽0/𝜖𝜖 ≫ 1



however, the large kick strength assumption 
can be limited due to beam pipe aperture

 Illustration on a toy model:

𝜔𝜔 = 𝜔𝜔0 + 𝜔𝜔1 𝐽𝐽 +𝜔𝜔2
𝐽𝐽2
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Histogram: ground truth
Line: theoretical estimation



Inverse Radon transformation (an algebraic 
tomography method) using theoretically estimated 

marginal profiles



Inverse Radon transformation (an algebraic method)
using theoretically estimated marginal profiles

 Reconstruction of 2D 
phase-space via inverse 
Radon transform using 
beam profiles estimated 
theoretically on (virtual) 
BPM data of kicked beam 
at various kick angles

Ground truth
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Summary of inverse Radon 
with theoretical profile estimation

Requires knowledge of optics parameters
• transformation from physics to normal coordinate 
• oscillation frequency at kick action
• nonlinear frequency detuning at kick action
• kick action and angle in normal coordinate

Requires strong kicks 
• generally not possible in presence of tight physical aperture

Requires enough angular resolution
• needs many kicks of different angles



Gaussian Mixture Model (GMM)



use Gaussian Mixture Model (GMM)
 TBT beam centroid is analytically integrable for isotropic Gaussian

 Therefore, one can model the beam density by GMM

𝑥𝑥 𝒩𝒩,𝑖𝑖 =



use Gaussian Mixture Model (GMM)
 Virtual BPM data 𝑥𝑥 𝐵𝐵𝐵𝐵𝐵𝐵,𝑘𝑘,𝑖𝑖 is generated from the toy model 

 Fit parameters by minimizing 

• 𝐾𝐾(= 8) kick actions from [2𝜖𝜖,4𝜖𝜖] and kick angles equally spaced in [0,𝜋𝜋]

Ground truth GMM estimation

𝜔𝜔 = 𝜔𝜔0 + 𝜔𝜔1 𝐽𝐽 +𝜔𝜔2
𝐽𝐽2
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In order to reduce computational 
complexity of optimization, optics 
parameters are first optimized 
using single Gaussian kernel 
model and global optimization 
(differential evolution method). 

Then, all parameters are 
optimized through Nelder-Mead 
method.
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Summary of GMM
Computational complexity

• There are too many parameters to fit : 
»multiple Gaussian kernels (used 100), 
»optics parameters (e.g. 𝜇𝜇0, 𝜇𝜇1),
»kick strengths and angles

• Using a black-box optimization tool took 12 hours using single core
• hard to estimate model uncertainty due to computational complexity
• Maybe relieved with GPU and differentiable implementation.

Resolution is limited by number of Gaussian kernels.

May have better fit for optics parameter (compared to single Gaussian 
beam model )



Differentiable Particle simulation Model (DPM)



use Differentiable Particle Model
Use particle model and simple differentiable simulation model

• Motivated by [1] to reduce computational complexity with 
• Simple betatron frequency model:

• Particle locations, optics parameters are updated through gradient decent of 
the objective minimizing difference between prediction and true BPM TBT 
data with 8 different kicks   ~corresponds to negative log likelihood

• Approximate Bayesian ensemble by anchoring (with L2 regularization) [2,3] model 
parameters to the randomized particle locations and prior optics parameter 
estimations using single Gaussian model. ~corresponds to negative log prior

𝜔𝜔 = 𝜇𝜇0,𝑘𝑘 + 𝜇𝜇1Δ𝐽𝐽

�
𝑘𝑘=1

𝐾𝐾

�
𝑖𝑖=0

𝑇𝑇
some regularization loss

𝑥𝑥 𝐵𝐵𝐵𝐵𝐵𝐵,𝑘𝑘,𝑖𝑖 − 𝑥𝑥 𝐵𝐵𝐵𝐵,𝑘𝑘,𝑖𝑖
2 + 𝛼𝛼

[1] Ryan Roussel et al, “Phase Space Reconstruction from Accelerator Beam Measurements Using Neural Networks and 
Differentiable Simulations”
[2] Ian Osband et al, “Randomized Prior Functions for Deep Reinforcement Learning”, NeurIPS 2018
[3] Tim Pearce et al, “Bayesian Inference with Anchored Ensembles of Neural Networks, and Application to Exploration in 
Reinforcement Learning”, ICML2018
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use Particle Model

at initialization end of training

Ground truth

8 ensemble 
models

𝜇𝜇1



Summary of PM
Computational complexity

• With gradient decent (ADAM) optimization, it still took 10 hours (using 
one CPU core) for 8 models  ( ~ 1h for each model)

• Maybe relieved with implementation.

UQ may be feasible due to faster training (compared to GMM without 
differentiable model)

Better fit for optics parameter (compared to single Gaussian beam model )



Neural Network (NN) Model 
with supervised learning 

and model uncertainty



 Input: theoretically estimated marginal profiles
Output: beam density plot and reconstructed marginal profiles

Use NN

[4] Alex Scheinker, “Adaptive machine learning”, information 2021 Motivated by [4]



Virtual BPM TBT data from toy-simulation-model

Each data is generated using randomly sampled model parameters of 
simulation (“domain randomization” for “sim-to-real” )
• randomized model parameters need to cover the expected real machine 

behavior
» beam emittance 𝜖𝜖 ∼ 𝒩𝒩 1,𝜎𝜎𝜖𝜖
» frequency parameters  𝜔𝜔𝑖𝑖 ∼ 𝒩𝒩 �𝜔𝜔𝑖𝑖 ,𝜎𝜎𝑖𝑖𝑖𝑖 , 𝑖𝑖 ∈ [0 − 2]
» kick strengths and angles  𝐽𝐽0,𝑘𝑘 ∼ 𝒩𝒩 ̅𝐽𝐽0,𝑘𝑘 ,𝜎𝜎𝐽𝐽0 , 𝜃𝜃𝑘𝑘 ∼ 𝒩𝒩 �̅�𝜃𝑘𝑘 ,𝜎𝜎𝜃𝜃 , 𝑘𝑘 ∈ [1,8]

How training data generated

𝜔𝜔 = 𝜔𝜔0 + 𝜔𝜔1 𝐽𝐽 +𝜔𝜔2
𝐽𝐽2

2



Some of 
random

(except the 1st one) 
prediction 
samples



 UQ using ensemble
• As it is expected that the model predictions in the training distribution are 

close each other while predictions in out-of-distribution show large variance 
for each model

 The reconstruction loss can also be used for UQ
• As it is also expected to be small in the training distribution while large in 

out-of-distribution 

UQ using reconstruction loss of input profile
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OOD samples are generated by sampling from 4 times larger 
parameter variances (than the variance used for the training data generation) 

» beam emittance 𝜖𝜖 ∼ 𝒩𝒩 1, 4𝜎𝜎𝜖𝜖
» frequency parameters  𝜔𝜔𝑖𝑖 ∼ 𝒩𝒩 �𝜔𝜔𝑖𝑖 , 4𝜎𝜎𝑖𝑖𝑖𝑖 , 𝑖𝑖 ∈ [0 − 2]
» kick strengths and angles  𝐽𝐽0,𝑘𝑘 ∼ 𝒩𝒩 ̅𝐽𝐽0,𝑘𝑘 , 4𝜎𝜎𝐽𝐽0 , 𝜃𝜃𝑘𝑘 ∼ 𝒩𝒩 �̅�𝜃𝑘𝑘 , 4𝜎𝜎𝜃𝜃 , 𝑘𝑘 ∈ [1,8]

Out of distribution samples

Kilean, AP meeting, Slide 26





profile reconstruction losses





Summary of NN
Computational complexity is no longer a problem but the 

collection of training data and training time can be problematic

The reconstruction loss looks promising alternative method for 
UQ

Domain randomization is used for “sim-to-real” adaption. 
• However, (as is the case of GMM or PM) the simulation model may not enough for real machine



Conclusion



Conclusion
 TBT(turn-by-turn) beam centroid data is function of initial (before kick) 

beam distribution
• Beam profile can be theoretically estimated when 𝐽𝐽0/𝜖𝜖 ≫ 1

» ML methods does not require large kick

We investigated various method for 2D phase-space tomography 
using kicked beam turn-by-turn (virtual) BPM data
GMM, PM methods are promising as long as

• Computational complexity problem can be improved through differentiable 
simulation model and GPU implementation

NN method is promising as long as
• Enough (simulational) training data that can represent the real machine 

can be collected

 In all cases, simple but well-representative simulational model plays 
important role
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Backup slide



PM training loss
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NN test samples of best profile loss



NN test samples of worst profile loss
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