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Brightness control at the Alternating 
Gradient Synchrotron (AGS)
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• Alternating gradient / strong focusing principle: achieve 
strong vertical and horizontal focusing of charged 
particle beam at the same time 

• Accelerates proton to 33 GeV in 1960

• 12 super-periods (A to L), 240 main magnets, 810 m 
circumference

• Now serves as injector for Relativistic Heavy Ion 
Collider (RHIC) 

[1]



Motivation: support for EIC Cooler
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• Electron cooling for the EIC requires small incoming emittances from the 
AGS

• Necessary pre-cooler at RHIC injection energy (AGS extraction energy)

• Current AGS lacks systematic tuning routine, mostly hand tuned by 
operators

• Algorithm to better control beam in AGS will be helpful for future EIC cooler



Orbit Response Matrix (ORM)
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• Mapping 𝑅 between closed orbit 
measurements and corrector settings

• 72 pick-up electrodes (PUE), 48 horizontal 
and vertical corrector pairs 

• Linear orbit response to corrector change: 
calculate 𝑅 matrix by changing each corrector 
pair separately

• Corrector current 𝐼 → angle 𝜃 by calibration 
factor

• Traditional orbit correction: ∆�⃗� = 𝑅!" ∆�⃗�



MAD-X to BMAD translation
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• Successfully translated bare machine to BMAD: ramping in progress 
• Can use Python interface (PyTao) to run simulations much easier

Floor plan
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Orbit Response vs. One Corrector (Sim.)
• PUE = pick-up electrode = BPM
• Vertical axes = vertical orbit in meters



Reference 𝑅 𝒚 matrix
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• Reference = bare machine (only main magnets turned on), no error
• Change vertical correctors, observe change in vertical orbit



• Actual machine with errors (e.g. quadrupole gradient errors, corrector calibration 
errors, etc.) produce different 𝑅#$%&'($) from model/reference machine 𝑅#*)$+

• Considering all possible sources of errors as a vector 𝜈, build response error model 
𝐽#*)$+

• Reconstruct any 𝜈 given known ∆𝑅 and 𝐽#*)$+

Use ORM to identify machine errors
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Reconstruct errors using SVD 
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• Traditional tuning routine: perform singular value decomposition (SVD) directly on 𝑅
• Machine error detection: perform SVD on 𝐽#*)$+
• Solve for ∆𝜈 using ∆𝑅 = 𝐽#*)$+ ∆𝜈, where 𝐽#*)$+ is not a square matrix

𝑛 = 𝑁,*((, 𝑚 = 𝑁-./

∆𝑅: 48 × 72, 1

𝐽#*)$+: (3456, 𝑁$((*()



Test case: quadrupole strength error
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• 24 quadrupoles (12 horizontal, 12 vertical), 1 in each super-period

• Linear orbit response to quadrupole kick change: calculate ∆𝑅 = 𝑅#$%&'($) − 𝑅 ($0 by 
changing each quadrupole separately  → 𝐽123 =

∆5!"
∆6#

• Quad kick defined with one variable KQH/KQV in MAD-X → variables in BMAD allow 
separate change of quad kicks



Test case 𝑱𝒎𝒐𝒅𝒆𝒍 matrix (horizontal)
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• Calculated using ∆𝜈 = 40 A in power 
supply current for each quadrupole 
(±10% in k1 value, later reproduced 
using ±1% in k1)

• Agreement with MAD-X model 
(redefined every quad individually) 
was obtained
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Reconstruct errors using SVD 
• 𝑈 and	𝑉 are	square	orthogonal	matrices:	𝑈𝑈7 = 𝑉𝑉7 = 𝐼

• 𝑆 is an 𝑛𝑚 × 𝑁 matrix whose first 𝑁 diagonal elements are singular values 𝜎 of 𝐽#*)$+

• 𝑆8 is pseudoinverse of 𝑆 whose first 𝑁 diagonal elements are "
9
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Test case: reconstruct errors with 𝑱𝒎𝒐𝒅𝒆𝒍

Satisfactory reconstruction results

• Reconstructed error = quadrupole power supply current



Neural Network for real-time ORM
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[2]

• Need dedicated machine time to measure 
ORM 𝑅#$%&'($): at least 30 min

• Pre-measured 𝑅#$%&'($) gets less accurate 
with time → orbit drift / brightness drop

• Update ORM with real-time data: build neural 
network model for 𝑅#$%&'($) or 𝑅 #$%&'($)

!"

• Can be used to calculate ∆𝑅 for machine error 
reconstruction 



Method: Feed Forward Neural Network
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• Neural Network (NN) built with PyTorch library

• Fully connected layers: output = activation(dot(input, weight) + bias)

• Activation function: Hyperbolic Tangent (Tanh) and Rectified Linear Unit (ReLU)

• Feed forward neural network (FFNN): most common, no feedback route

[3]



ORM NN model: training results
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• Input 48 vertical corrector kick → Output 72 y orbit measured at BPM
• FFNN with one hidden layer and Tanh activation
• Trained on 800 data pairs, tested on 200 data pairs: 𝑅: score = 0.998



Inverse ORM NN model: training results
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• Input 72 y orbit measured at BPM → Output 48 vertical corrector kick 
• FFNN with one hidden layer and Tanh activation
• Trained on 800 data pairs, tested on 200 data pairs: 𝑅: score = 0.993



Sensitivity studies for ORM 
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• Scan through some common sources of error to see how much ORM changes

• Find relevant parameters to include for building error-detecting model

• Goal: establish a neural network that identify error source given a measured ORM



Sensitivity studies: error sources
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Name Unit Range
Main magnet roll error mrad [-0.5, 0.5] 

Main magnet gradient error m-2 ± 0.1%
Quadrupole gradient error m-2 ± 0.2%

Sextupole offset error mm [-8, 8]
Snake magnet roll error mrad [-1.5, 1.5]

• Sources or error and ranges come from past survey data

• Criteria to quantify & visualize sensitivity:

• RMS of ORM matrix
• Beta-beating (vertical & horizontal)

∆𝛽
𝛽 =

𝛽!"#$%&"' − 𝛽!('")
𝛽!('")



Main magnet roll error
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• 240 main magnets, 20 magnets (01 to 20) in each super-period (A to L)

• Combined function magnets: dipole (Rbend) with non-zero k1, k2 

• Scan range: ±5 mrad with strong systematic super-periodicity (01 to 10 rolls one way, 11 to 
20 rolls another way)



Quadrupole kick error
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• 24 quadrupole magnets (12 horizontal, 12 vertical), one (17 for QH, 03 for QV) in each super-
period

• Scan range: ±0.1% in k1 values



Sextupole offset error
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• 28 sextupole magnets (14 horizontal, 14 vertical), 2 chromaticity sextupoles (13 for SXH, 
07 for SXV) per super-period 

• Scan range: ±8 mm in x, y offset



Future work
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• Finish sensitivity scan to determine relevant error sources: snake magnet 
incorporation to Bmad using field maps in progress

• Make simulation more realistic: add Gaussian noises to both magnets and BPMs
• Establish a dynamic retraining routine to keep model updated during operation

[4]
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