State of the art BO for Accelerators

Improvement over vanilla BO

Application specific acquisition functions	 Information based acquisition functions (e.g., BAX) Constraints (e.g., safety) Exploration (acq. = σ) Proximal biasing (avoids big steps) 	Minimizing emittanceEmittance characterizationTuning with slow magnets
Embed a prior/structural information into the model	 Non-zero prior means (much faster → scaling to high dim optimization) Hyperparameter priors (regularity, safety) 	 LCLS injector tuning Different beams transfer / historical data
Application specific kernel functions	 Deep kernel learning (complex embeddings) Composite kernels, contextual/adaptive (distribution shift) Correlated kernels (low dimensional structure embedding) 	Continuous opt. with driftsTriplet magnets
Techniques for efficient inference	Data subsampling (take most relevant data points)Approximate GP's	Continuous opt.Large number of data points
Parallelization for simulated optimization	Q-sampling (see botorch)Local penalization, etcMGGPO (BO-GA hybrid, for HPC)	Offline optimization

What does the community need to investigate?

- Implement everything in Botorch + contribute new models/kernels/acquisition functions to Botorch
- Uniform framework for generic problem optimization
 - Xopt/GeOFF
 - OR literally anything else, just pick one!
- Advertisement of BO capabilities, not currently taken advantage of
- More benchmarking to accelerator test problems
- More development of (continuous) multi-fidelidity optimization for sims
- Combine GP's with other UQ methods + differentiable simulations/surrogate models (NN's etc)
- Non-gaussian likelihoods

How to optimize? (generally speaking)

- Complexity of the problem (dimensionality of the input space)
- Complexity of the evaluation (cost/time)
- Complexity of the decision making (which action to take)
- Overhead (cost before optimization/work)

How can we collaborate, educate, etc?

- Review article in PRAB (Ryan will organize)
- Common channel to discuss (Slack, Mattermost)

