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In this project, we design a new scheme targeting fully automated aberration corrector tuning, achieving greater speed and less human bias. Specifically, we solve three
problems in aberration correction from the perspective of accelerator physics via machine learning.

l We derive the fundamental connection between the aberration function and the delivered beam emittance in phase space via Wigner distribution.
l We demonstrate a customized convolutional neural network can accurately predict emittance from experimentally accessible electron Ronchigrams.
l We design a Bayesian approach to optimize for the aberration corrector parameters for minimum emittance growth with uncertainty quantification.

Abstract

The standard expression of aberrations in electron microscopy is the aberration
function, which characterizes the electron beam in its wave function.

Wigner-Weyl transform of the electron wave function approximates the shift of the
beam to the gradient of the aberration function.

Therefore, we can define the root-mean-square (RMS) emittance of the electron
beam as,

From Aberration Coefficients to Beam Emittance

Fig. 1. Spectra 300 installed in Duffield Hall, Cornell University.
Fig. 2. Ronchigrams collected from the Spectra 300 microscope with varying 
aberration coefficients.

We leverage the expressive power of state-of-the-art deep learning models to
extract the abundant phase space information from electron Ronchigrams. Here
we design a customized convolutional neural network (CNN) based on the VGG
architecture commonly used in image recognition. With a training data set of
25,000 simulated Ronchigrams under various types of aberrations labeled by their
ground-truth beam emittance, the CNN can serve as a rapid beam quality
measurement tool tool of emittance without the need of extra measurement.

Measurement-free Measurement via Deep Learning
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Fig. 4. Left: Ronchigrams from the beam before and after optimization. 
Right: Transverse distribution of electrons at the center of the objective lens. 
The comparison indicates that optimization of aberration correctors according to
the minimization of beam emittance growth can effectively eliminate lower order
aberrations.
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Fig. 3. Left: VGG-16 architecture to map 
Ronchigrams to beam emittance. Right: CNN 
response to change in single aberration 
coefficients from Nion UltraSTEM line scans 
(acquisition time 200 ms). Note that though 
defocus 𝐶!,# should not affect emittance, 
variation is present in the upper plot due to the 
hysteresis and coupling between lenses.

Fig. 5.Workflow of online Bayesian optimization of an electron microscope. The 
right illustrates the process in 1D.

Fig. 6. Left: Benchmark results of deep kernel Bayesian optimization v.s. generic 
Bayesian optimization v.s. Simplex method on the GPT-6D simulation.
Right: Phase space distribution of the electrons at the center of the objective lens 
in polar coordinates. The area of the cloud represents beam emittance and is 
calculated from the nonconvex polygon boundary marked in green.

The mapping from Ronchigrams to emittance enabled by deep learning gives the
black-box function to optimize for aberration correction. Here we adopt
Bayesian optimization, a sample efficient and gradient free method, for faster
convergence and uncertainty quantification, where a gaussian processes (GP)
model is applied as the surrogate model. The modelling accuracy largely relies
on the kernel, which captures the correlations between different observations and
among different dimensions. While most generic kernels are isotropic (e.g., RBF,
Matern), we can further implement a deep kernel, built upon a simple deep
neural network, to improve the optimization performance by effectively learning
the correlations between input dimensions.


