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Figure 1: Cartoon of accelerator and beam measurements. 

The image shows where each beam measurement was 

collected from.

Figure 2: Cartoon of architecture. During training, the model 

takes all the 2D projections and loss value as input into the 

training. During testing, only the initial 2D projections were 

given and the model predicts the loss values and 2D 

projections in addition.

Figure 3: (A) Histogram of original data set using six 

projections, (B) and same model but using three projections. 

(C) Histogram of original data set using six projections, (D)

and same model but using three projections.

Conclusion
The results show that if given only three projections of 

the 4D phase space, the projections can be reduced 

into smaller latent dimensions that contain the core 

information. 

This information can then be used to predict the beam 

transmission downstream. 

The latent dimension was verified to have contained 

the core information through a decoder that correctly 

reconstructed the encoded images. 

Finally, this method generalizes fairly well to initial 

beam distributions with non-linear perturbations, 

showing robustness and the potential to model the real 

machine.
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Approach using Convolutional Autoencoders

TRACK simulation of the ATLAS LEBT created 430,000 data points to serve as our training set. The data 

taken were the number of particles lost at four different locations and six projections of the 4D phase space 

onto a 33x33 pixel grid, as seen in Fig. 1. 

Figure 2 shows a neural network model using convolutional autoencoders that trained the model. 

Convolutional Autoencoders reduce high dimensional projections into a small latent dimension. If the original 

projections can be recreated from this, then that latent dimension contains the core information of the beam 

phase space.

The frozen layer technique was used to train the model. This was done first by having the network learn to 

model the phase space evolution, then learn to predict the beam transmission.

This was done with the first 6 projections, then using 3 projections. 

The initial distribution was distorted using a sextuple and trained using also 6 and 3 projections. This is to 

gauge the robustness of the model is when it receives data it has never seen before.

Results

A test dataset was generated and the results are shown in Figure 3. This is a correlation graph so a straight 

line would be a perfect result. 

Looking at the original distributions, the model worked well since the lines are mostly straight. Using only 3 

projections resulted in an error of around 3%. 

When using a sextuple distorted distribution, the model performed worst, which was expected, but it was still 

able to predict beam loss fairly well. 

A transfer learning study would be beneficial here to see if similar accuracy can be achieved and if the 

knowledge learned can be conserved.

Motivations

Understanding and minimizing uncontrolled beam loss, an unexpected loss to the beam within the 

beamline, is a challenging problem in obtaining high beam power in hadron linacs such as ATLAS, SNS, 

and FRIB. 

The loss depends on many factors such as the optics settings, beam aperture, and beam distribution.

Machine learning allows us to obtain hidden correlations from high dimensional data and can be use to 

predict the beam loss given the initial distribution.
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