
Introduction

Bayesian Optimization (BO) is a time effective 

method of automating accelerator tuning for 

LCLS because we sample as few points as 

possible to find input values that achieve a good 

optimum. A problem with this BO application is 

that its performance worsens exponentially in 

higher dimensions due to poor scaling. A good 

prior mean in Gaussian Processes (GPs) can 

help with scaling. Therefore, this study’s 

objective is to explore cheap and more 

expressive (non-constant) prior means for 

Gaussian Processes to optimize Bayesian 

Optimization for tuning the injector. 

Objective Function

• We use BO during accelerator tuning to find 

input values to the injector that minimize 

emittance×bmag (maximize          -

emittance×bmag).

• The objective function employs a Neural Net 

(NN) surrogate model of the accelerator 

injector to prototype this optimization 

approach.

Gaussian Processes

• The GP’s predictive mean fits through 

ground truth points and then returns to the 

prior mean in areas with no data samples.

Figure 1: Visualization of a GP’s posterior curve (blue) fitted to 

two data samples (red) compared to the GP’s prior mean curve 

(orange). 

The GP and predictive 

mean function (blue line) 

are defined as: 

Implementing Custom Priors

• We use PyTorch for all models and BO 

implementations to aid end-to-end 

differentiability.

Figure 2: A model is specified as the mean function of the GP 

and represents the initial behavior of the objective function. The 

system gives the GP data samples. The GP then generates a 

posterior distribution and predictive mean function, which the 

acquisition function (Upper Confidence Bound) uses to find the 

inputs most likely to yield an optimum and return it to the 

system. 

• Using a NN model prior mean that includes 

prior information of the objective function, BO 

should be able to find better optima faster.

Neural Net Accuracies

Correlation with ground truth: 0.889

Figure 4: Accuracies of models trained on a mesh grid of 39 (top 

– Model1) and 49 (bottom – Model2) data samples are shown 

with parameter scans of the 9 input variables as well as the 

correlation values with the ground truth. 

Model1

Correlation with ground truth: 0.547

Model2

Model1 Model2

Conclusions

• Our goal was to determine how accurate a 

model must be as a prior mean in order to 

get a performance gain in BO.

• Including prior information in the GP’s prior 

mean always leads to an improvement in BO 

performance during coarse tuning.

• During fine tuning, we need a more 

accurate model to give better BO 

performance.

Next Steps

• We will explore methods of improving BO 

performance during the fine-tuning stage.

• We will perform an experimental 

demonstration with the real accelerator.
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BO Comparison Results

Figure 5: BO comparisons of the constant prior, injector 

surrogate “ground truth” prior, Model1, and Model2. 

• In the trivial case, where the true model is 

used as a prior, the solution is found almost 

immediately

• Using better prior models demonstrates better 

initial performance vs. worse priors

• Both priors initially improve performance over 

uniform prior

• However, allowing the prior to be retrained at 

every iteration improves late-stage 

optimization performance


