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Bayesian Optimization (BO) is a time effective
method of automating accelerator tuning for
LCLS because we sample as few points as
possible to find input values that achieve a good
optimum. A problem with this BO application is
that its performance worsens exponentially in
nigher dimensions due to poor scaling. A good
brior mean in Gaussian Processes (GPs) can
nelp with scaling. Therefore, this study’s
objective is to explore cheap and more
expressive (non-constant) prior means for
Gaussian Processes to optimize Bayesian
Optimization for tuning the injector.

Implementing Custom Priors

BO Comparison Results

Objective Function

INnputs: Outputs:

SOLlI:solenoid_field_scale
(kG*m)

-emittancexbmag (mm-mrad)

a 2
g (ﬁ ﬁ)-i— [c:r\/z—ﬁ EJ
mug ﬁ {3 ) ,‘( ﬁ

QAOTL:bl_gradient (kQ) E [1]

CQOtl:bl_gradient (kG)

SQO1:bl_gradient (kG)

QAO2:bl_gradient (kG) Injector Schematic

Solenoid
i Laser-Heater
f

QEOLbl_gradient (kG)

Ly 4
Specttometer R° |

QEO2:bl_gradient (kG)

d Emittance
Screens/\Wires
OTR2

L1S

QEOQO3:bl_gradient (kG)

135-MeV ~ YAGS?
Spectrometer

QEO4:bl_gradient (kG) - Screen

« We use BO during accelerator tuning to find
input values to the injector that minimize
emittancexbmag (maximize -
emittancexbmag).

« The objective function employs a Neural Net
(NN) surrogate model of the accelerator
injector to prototype this optimization
approach.

« Using a NN model prior mean that includes
prior information of the objective function, BO
should be able to find better optima faster.
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Figure 2: A model is speuﬂed as the mean function of the GP
and represents the initial behavior of the objective function. The
system gives the GP data samples. The GP then generates a
posterior distribution and predictive mean function, which the
acquisition function (Upper Confidence Bound) uses to find the
inputs most likely to yield an optimum and return it to the
system.

System

 We use PyTorch for all models and BO
implementations to aid end-to-end
differentiability.

Neural Net Accuracies
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Figure 1: Visualization of a GP’s posterior curve (blue) fitted to
two data samples (red) compared to the GP’s prior mean curve
(orange).
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The GP and predictive f(x) Q’P(m(x), (x,x ))
mean function (blue line] f, = m(X,) + K(X*’X)Kgl(y — m(X))

are defined as: where K, = K + 021 [2]

« The GP’s predictive mean fits through
ground truth points and then returns to the
prior mean in areas with no data samples.

Modell
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Correlation with ground truth: 0.547
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Figure 4: Accuracies of models trained on a mesh grid of 3° (top
— Modell) and 4° (bottom - Model2) data samples are shown
with parameter scans of the 9 input variables as well as the
correlation values with the ground truth.
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Figure 5: BO comparisons of the constant prior, injector
surrogate “ground truth” prior, Modell, and Model?2.

« In the trivial case, where the true model is
used as a prior, the solution is found almost
immediately

« Using better prior models demonstrates better
initial performance vs. worse priors

« Both priors initially improve performance over
uniform prior

 However, allowing the prior to be retrained at
every iteration improves late-stage
optimization performance

Conclusions

* Our goal was to determine how accurate a
model must be as a prior mean in order to
get a performance gain in BO.

« Including prior information in the GP’s prior
mean always leads to an improvement in BO
performance during coarse tuning.

* During fine tuning, we need a more
accurate model to give better BO
performance.

Next Steps

« We will explore methods of improving BO
performance during the fine-tuning stage.

« We will perform an experimental
demonstration with the real accelerator.
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