Longitudinal Phase Space Manipulation at

the LCLS Using Neural Networks and

Bayesian Optimization

Background and Motivation

Numerous scientific users visit the LCLS each year with requests for

Learned Metric Performance

We trained an auto-encoder on a

NATIONAL

ACCELERATOR

LABORATORY

custom photon beam parameters (with different associated longitudinal phase space distributions for the electron beam).

To do automatic tuning, we **need a suitable metric** that specifies the difference between an observed and target longitudinal phase space (LPS) distribution

Shot-to-shot fluctuation in LPS for one setting combination

Finding a good metric for longitudinal phase space images at LCLS can be difficult:

- Scalar fits \rightarrow lose some information and can have artifacts
- Pixel-by-pixel mean squared error \rightarrow requires very precise alignment; hard to distinguish most important feature of beam

wide variety of measured LPS images and found a two-dimensional latent space was sufficient to capture the major features

A larger latent space enables a higher-fidelity reconstruction (tunable)

- Spectral similarity index \rightarrow not clear this is measuring the right thing for our problems?
- KL divergence + earth mover distance \rightarrow some open questions about robustness + computational efficiency (coo https://ml/physicalscjiences.github.io/2020/files/NeurIPS_ML4PS_2020_100.pdf)

NN-based auto-encoder

Auto-encoders can reduce highdimensional data into a low-dimensional representation. This can be used as learned metric for comparing two distributions. In principle this could help ignore irrelevant features/noise and add robustness to cropping/alignment issues.

 $\overline{}$

Case

are shown at left

 \rightarrow reconstruction indicates irrelevant fluctuating features are mostly washed out

Tuning with Learned Metric

Here we adjust the BC1 and BC2 peak current settings (the main variables used by operations) with Bayesian Optimization to reach a target LPS

The latent space metric performs substantially better in tuning than the mean squared error (MSE) metric → substantially faster convergence with learned metric

Questions? Contact Auralee Edelen, edelen@slac.stanford.edu