
Xopt: A Simplified Framework for Optimization of Arbitrary Problems
using Advanced Algorithms

R. Roussel, C. Mayes1

1 SLAC National Accelerator Laboratory, Stanford University, Menlo Park CA 94025, USA

Introduction
I Recent development of advanced black

box algorithms has promised order of
magnitude improvements in optimization
speed when solving physics problems.

I Algorithms remain inaccessible to the
general accelerator community, due to the
expertise and infrastructure required to
apply them towards solving optimization
problems.

I We introduce the Python package, Xopt
(github.com/ChristopherMayes/Xopt),
which implements a simple interface for
connecting arbitrarily specified optimization
problems with advanced algorithms.

Xopt Input Options
I Xopt requires a simple Python function to

evaluate the value of objectives, constraints,
etc. as a function of input variables

evaluate(input[dict]) -> output[dict]

I Xopt can be completely initialized from
a YAML file, including evaluation function,
optimization algorithms, etc. (useful for
limiting code, running cluster jobs)

I Inputs are validated at runtime using
Pydantic

xopt:

max_evaluations: 6400

generator:

name: cnsga

population_size: 64

population_file: test.csv

output_path: .

evaluator:

function: xopt.resources.

test_functions.tnk.evaluate_TNK

function_kwargs:

raise_probability: 0.1

vocs:

variables:

x1: [0, 3.14159]

x2: [0, 3.14159]

objectives: {y1: MINIMIZE , y2:

MINIMIZE}

constraints:

c1: [GREATER_THAN , 0]

c2: [LESS_THAN , 0.5]

linked_variables: {x9: x1}

constants: {a: dummy_constant}

I Alternatively, Xopt objects can be created
through a Python script or interactive
interface (Jupyter notebook).

evaluator = Evaluator(my_function ())

generator = CNSGAGenerator ()

vocs = MyVOCS ()

X = Xopt(

evaluator=evaluator ,

generator=generator ,

vocs=vocs

)

I Finally Xopt can be initialized from data files
created by previous Xopt runs, containing
Xopt run configurations and measurements

Xopt Structure

I Principal Xopt objects are modular and thus swappable to change algorithm type, objective
evaluation, or VOCS definitions.

I Evaluators are subclasses of concurrent.futures Python classes, enabling parallel
evalutions using multithreading, MPI, Dask etc. Asynchronous evaluation also available.

Generators
I Currently availaible generators

I Single and Multi-Objective Bayesian
optimization with constraints

I Bayesian Exploration (characterization)
I Multi-Objective Multi-Generation BO
I Continuous NSGA-II Genetic optimization
I Extremum Seeking
I Nelder-Mead (Simplex)

I Custom generators can be implemented by
subclassing the Generator base class.

I Generators store objects used during
optimization to allow introspection

Example of generator introspection with Bayesian
Exploration of a constrained problem.

Example Evaluate Function
I Here we show an example evaluate function

for use with an EPICS control system.

from epics import caget , caput , cainfo

import time

outputs = ["XRMS","YRMS"]

def make_epics_measurement(input_dict):

set inputs

for name , val in input_dict.items():

caput(name , val)

wait for inputs to settle

time.sleep (1)

get output values , current time

output_dict = caget_many(outputs)

output_dict["time"] = time.time()

compute geometeric avg of beamsizes

output_dict["RMS"] = (

output_dict["XRMS"]*\

output_dict["YRMS"]

)**0.5

return output_dict

Example Application - LCLS FEL Power Characterization
I Proximal biasing to reduce exploration step size and constraints to prevent charge loss.
I Custom evaluate function captures 80th percentile FEL power over 100 shots.
I Data stored in Pandas DataFrame objects, exported to text file with Xopt configuration
I FEL sensitivity is captured in the GP model lengthscales inside the generator object.
I Entirely executed from an interactive Jupyter notebook.

