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Introduction and Motivation

We present initial results from a proof-of-concept “smart alarm” for the CEBAF injector. Because of the injector's large number of parameters and

possible fault scenarios, it is highly desirable to have an autonomous alarm system that can quickly identify and diagnose unusual machine states. Our

approach leverages a trained neural network to not only identify an anomalous machine state, but also to identify the root-cause by pinpointing the

specific element or region responsible. We developed an inverse model trained on data collected during normal operations. Using the inverse model,

measurements from the machine are used to compute machine settings, which are then compared to EPICS setpoints. Instances when predictions

differ from EPICS setpoints by a user-defined threshold are flagged as anomalies, and the user is alerted to the issue. We present the results of our

data collection efforts, model training and performance, and initial performance metrics.

Data Preparation and Model Development

Results

Future Work

• As a case study we consider a 95 m section of the CEBAF injector

• Data for model training/testing was extracted from the CEBAF archiver

• Data was averaged for 1-minute and collected at 1-minute intervals from May 24, 2021

to January 7, 2022

 329,132 samples

 for each sample 215 setting PVs and 234 reading PVs

• Raw data is filtered with an emphasize on data quality rather than quantity

 94,327 samples

A data-driven tool capable of alerting operators

1. when an anomalous condition exists in the beamline

2. identifying the element setting that is the root cause

• The tool is based on an inverse model that maps beamline

readings (diagnostic readbacks) to settings (beamline

attributes operators can modify)

• The model leverages machine learning (ML) and is trained

on data representing normal conditions

• Model-predicted settings are compared to Experimental

Physics and Industrial Control System (EPICS) setpoints 

instances where predictions exceed the EPICS setpoints by

a user-defined threshold are flagged as anomalous

• Explore potential of the Smart Alarm to identify the geographic location of the root cause

of an anomalous condition – even if the root cause itself is not associated with a PV

• Implement scheduled training in order to maintain model performance and guard against

 concept drift: a change in the relationship between inputs and outputs, or

 data drift: changes in the underlying distribution of the inputs

• Extend the framework to other regions, and/or larger beamlines, in CEBAF

 data for model training is collected passively by mining the operational archiver

• The model architecture utilizes a fully-connected

neural network with three hidden layers of [100, 200,

400] neurons

• A combination of the Adam optimizer for the initial

2,000 epochs, followed by stochastic gradient

descent (SGD) for an additional 895 epochs, resulted

in the best model performance

• Current method is based on a configuration

file that lists particular PVs and specifies

upper and lower limits to trigger a warning

 hard-coded, heuristic approach that is unable to

dynamically adapt to changes

• Current method and the Smart Alarm agree

on 142 instances as being anomalous

• While the current method identifies 8

anomalous instances that the Smart Alarm

does not, the Smart Alarm identifies 133

anomalous instances that the current

method does not

Plot of the current from an injector beam current monitor for the filtered data. The month of August was used for machine

setup at low current and operation to user end stations commenced in early September. The gap beginning at the end of

December and extending to early January represents the holiday shutdown.

We perform three tests:

1. evaluate how accurately the model is able to identify the (setting) PV being changed

given only information about the readings

2. test how well the model can identify anomalous configurations

3. compare Smart Alarm performance with existing methods of identifying anomalous

conditions

1. Comparison with Ground Truth

2. Flagging Anomalous Machine States

3. Comparison with Existing Methods of Anomaly Detection

• A dedicated beam study was used to collect anomalous injector configurations

• Specific beamline elements were varied (solenoid, corrector and quadrupole strengths,

RF cavity gradients and phases) one by one in a systematic way

• Changes generated a measurable downstream response, but small enough that beam

was still transmitted to an insertable dump

• Data were taken at a variety of current settings: (1, 5, 10) mA  354 unique injector

configurations

• Supplement data from the beam study with data from the period of normal operations

• Thresholds are established for each setting PV and when the reconstruction error

exceeds the threshold it is flagged as anomalous

 we establish a threshold for each setting PV individually by taking the maximum reconstruction

error from the 18,866 test instances

Anomalous Data Collection
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• Approximates how a fully deployed

version of the model would function

• If we consider if any of the top three

reconstructed errors exceed their

respective thresholds, 275 of the 708

examples are flagged as anomalous

• To visualize the model’s performance

we use t-SNE to reduce the

dimensionality of the reading PVs for

each injector configuration from 234

down to 2 dimensions

• All flagged configurations are from

the beam study when PVs were varied

Injector configurations associated with the beam studies are denoted by blue markers and configurations taken from

normal operation are denoted by green markers. Machine states flagged by the model as anomalous are represented

by a black marker.

• Consider the 354 examples in which a setting PV was varied

• For each instance predicted settings are subtracted from the actual settings in the

machine at that time and generate reconstruction errors for each PV

• The PVs corresponding to the three largest reconstruction errors are reported and

compared to the ground truth

• 6 of the instances not correctly identified by the model were for R01XPSETCG, which

is a composite signal of the four chopper cavity phases ganged together.

• this PV had been inadvertently left out of the training data  model had no

knowledge of the existence of the PV

• However, is that the model’s top four reconstruction errors consistently predicted each

of the four chopper phases as being the source of the anomalous condition

Top 1 Top 2 Top 3

Accuracy 77.4% 92.1% 94.6%


