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High-Dimensional Machine States During 
Unplanned Linac Beam Outages
Data from ~3k Linac devices were analyzed, comparing 
their time series to the output of a median filter to identify 
the largest “anomaly” signals. 24 devices led all others, 
selecting them for further study. 

Down-sampling the 24 time series to 1 Hz, normalized 
data from successive 10-second intervals were reshaped 
to give 240-dimensional “machine state” vectors.

Several label islands overlap neatly.  In most cases this 
shows where human-applied labels were not standardized, 
and should be merged. 

A study of nearest neighbors was conducted to help carry 
out label-merging systematically: For the nearest point to 
each label’s data points, what fraction (“affinity score”) bear 
each label? See heatmap, Fig. 3 for result at default-value 
random seed. 

ML-Assisted Ground-Truth Cleanup

Figure 1. One possible UMAP 2D 
embedding for the 12,377 state 
vectors from down times 2021.03-06.

Fig. 3. Heatmap of nearest-neighbors study 
in the low-dimensional UMAP embedding. 
Among the off-diagonal “affinity” scores, 
this study revealed some labels for which a 
substantial fraction (up to 100%) of the data 
points’ nearest neighbor is labeled 
differently.  On-diagonal “purity” scores 
range from 0.0 to 1.0.

applied labels convey the reason for the beam outage.  
Many outages form distinct “islands.” 

Live data can be readily visualized in this same space, 
automatically suggesting labels. A proof-of-concept site 
has demonstrated this in real time.

UMAP Parameter Optimization

UMAP (Uniform Manifold 
Approximation and Projection) 
is a fast-fitting dimensional 
reduction algorithm which 
preserves local structure in the 
low-dimensional embedding.  
Fig. 1 shows one such UMAP 
embedding for these outage 
data using default parameters 
(random seed, min_dist, and 
n_neighbors) where human-

Seeking compact embedding 
groups, we fit UMAP with  200 
random seed values at the values of 
min_dist and n_neighbors 
shown in Fig. 2.  Figure of merit 
taken to be the mean diagonal span 
(root-sum-squared extent in 
low-dimensional projection) of each 
single-label point cloud, 
population-weighted averaged 
across labels.  Minimized (optimized) 
at min_dist=0.2, 
n_neighbors=200. 

Figure 2. Diagonal span (mean 土 stddev) of labeled 
groups vs. min_dist value, for several choices of 
n_neighbors.  Opacity scales with label population 
size. 

For example, all six datapoints of label 30 (“LRF5 Reverse 
Power Trip”) were nearer to one of the 1231 data points of 
label 31 (“LRF5 Driver Power Low”), suggesting this is a 
redundant label. Conducting successive mergers A → B 
removes 26 of the original 59 labels, merging them into 12 
larger populations, removing all inter-label affinities above 
0.05, and all self-affinity scores below 0.66.  

On-Diagonal Non-Zero 
Off-Diagonal

Before Mean: 0.7357 
Median: 0.8276
Stddev: 0.2865

Mean: 0.0736
Median: 0.0183
Stddev: 0.1393

After Mean: 0.9394
Median: 0.9765
Stddev: 0.0885 

Mean: 0.0263
Median: 0.0069
Stddev: 0.0570

Affinity scores improve as 
expected (Table 1) and 
the population-weighted 
span figure of merit used 
in optimization increases, 
reflecting the higher 
population of some of the 
widest-flung labels. Table 1: Statistics of nearest-neighbor 

“affinity” scores before (upper) and after 
(lower) one round of label mergers 

In a future study, the nearest-neighbor matrix may be 
recalculated after each merger, which may give slightly 
different results.  Conducting this analysis over many UMAP 
random seeds will demonstrate the robustness of the 
merger recommendations to randomness, if any.

Thus the nearest-neighbor analysis of the UMAP projection 
(1) quantifies spatial clustering of ground-truth labels in 
low-D space and (2) mechanistically proposes label mergers 
to improve the human-applied ground-truth labels, 
improving method scalability.

Future work
Planned refinements: Expanding training data history; 
Restricting to “onset” datapoint of each outage; Faster 
intervals and expanded set of devices in machine state.

FERMILAB-POSTER-22-225-AD


