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Abstract 

The use of artificial intelligence can significantly reduce 

the time needed to tune the ATLAS heavy ion linac. After 

establishing automatic data collection procedures and ana-

lyzed the data, we have developed, and tested machine 

learning models to tune and control the machine. Models 

based on Bayesian Optimization (BO) and Reinforcement 

Learning (RL) are presented and their performance com-

pared and discussed. RL and BO are well known AI tech-

niques, often used for control problems. Results from beam 

tuning models are presented for a subsection of the ATLAS 

linac that contains complex elements such as the radio-fre-

quency quadrupole. Another model was developed to assist 

in the commissioning of a new beamline. These models 

will be later generalized to the whole ATLAS linac, and 

similar models can be developed to control any accelerator 

with a modern control system. 

INTRODUCTION 

ATLAS is the DOE/NP User Facility for low-energy Nu-

clear Physics with heavy ions [1]. It operates ~6000 hours 

per year. In addition to delivering any stable beam from 

proton to uranium, the facility also provides radioactive 

beams from the CARIBU source [2] and via the in-flight 

radioactive ion separator, RAISOR [3]. The facility uses 3 

ion sources and serves 6 target areas at energies from ~1-

15 MeV/u. To accommodate the large number and variety 

of approved experiments, the ATLAS linac is tuned for a 

different ion species every 3 or 4 days over 40 weeks of 

operation per year. The start-up time varies from ~12-48 

hours depending on the complexity of the tuning, which 

will increase with the upcoming Multi-User Upgrade to de-

liver beams to two experimental stations simultaneously 

[4]. DOE/NP is funding a project to use AI/ML to support 

ATLAS operations. The project aim is to reduce the accel-

erator tuning time and improve machine performance by 

developing and deploying artificial intelligence methods. 

The project goals are three-fold: 

• Establish data collection, organization and classifica-

tion, towards a fully automatic and electronic data col-

lection for both machine and beam data 

• Develop online tuning models to optimize operations, 

shorten beam tuning time and make more beam time 

available for the experimental program 

• Develop a virtual machine model to enhance our un-

derstanding of the machine behavior, improve ma-

chine performance, develop and optimize particular 

and new operating modes. 

It is expected that these developments will increase the sci-

entific throughput of the facility and the quality of the data 

collected.  

Significant progress has been made on the data collec-

tion and AI/ML modelling of the machine, and some of the 

results are presented below. 

ESTABLISHING AUTOMATED DATA 

COLLECTION 

The importance of data cannot be emphasized enough, 

it’s essential for any AI/ML project, to the point that a data 

scientist spends 80% or more of his or her time collecting, 

organizing and labelling data. At ATLAS, we have two 

kinds of data, first the machine settings or tunes and second 

the beam data. Up until the start of this project, the machine 

data in terms of tunes was systematically collected and of-

ten used to re-tune the machine by scaling the settings from 

one ion species to the next. However, the beam data, such 

as beam currents and profile projections along the linac, 

were not systematically or automatically collected. The 

Faraday cup readings (beam currents) were recorded man-

ually onto a sheet of paper during the tuning, while beam 

profiles were looked at on-the-fly but never recorded. 

Therefore, the beam data were either missing or not actu-

ally correlated to the machine data. As part of this project, 

we developed a system capable of collecting all the data 

required and correlating the beam data to the machine data 

in order to associate each tune with the corresponding 

beam information such as transmissions and profile projec-

tions throughout the different linac sections. Figure 1 

shows a schematic of the data collection interface which is 

a python code connecting a server to the control system and 

saving the necessary data. The bottom half of the figure 

shows the data that are now collected automatically during 

the tuning and also systematically during an experimental 

run. It is important to note that the Faraday cup readings 

and beam profiles had to be digitized before saving. 

 
Figure 1: Schematic of the data collection interface (top). 

The Data being collected; element settings, beam currents 

and beam profiles at different locations on the linac. 
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BAYESIAN OPTIMIZATION FOR            

INITIAL ONLINE TUNING 

Due to the limited amount of beam data correlated with 

machine tunes we collected so far (~ 30 tunes), we have 

chosen Bayesian Optimization (BO) for our initial tuning 

model. BO is widely used [5] because it combines the com-

plementary strengths of human and numerical optimiza-

tion: life-long learning, learning by experience, not requir-

ing large amounts of data, estimating its own uncertainty, 

and reaching global optimum in a minimum number of 

steps. This method starts with a prior belief regarding the 

objective function and then updates it based on samples 

drawn from the system for a better approximation, a poste-

rior belief. It uses a probabilistic surrogate model for ap-

proximating the objective function and an acquisition func-

tion that instructs the model where to query the system next 

for more likely improvement. 

A BO model was developed online for the tuning of two 

different beams; 14N3+ and 40Ar9+, through the ATLAS RFQ 

beamline to maximize beam transmission. The line con-

sists of a triplet and two 2D steerers, varying a total of 7 

parameters. For the case of 14N3+, the starting data set in-

cluded 29 historical tunes and 33 randomly generated 

tunes. Although, due to different initial beam distribution, 

the historical tunes didn’t produce the expected high trans-

mission, they’re still more useful than the random tunes. 

For the case of 40Ar9+, only the 29 historical tunes were 

used to start the model. Figure 2 shows the beamline and 

the results of the tuning model compared to the operators’ 

manual tunes. We can clearly see that the model converges 

to a beam transmission similar to the operator’s (dashed 

green line) in ~ 30 iterations. Note that the typical RFQ 

transmission is ~ 80%. On the right plots, we see how much 

the settings have changed from the operator’s values. We 

notice that in some cases the change is minimal which 

means that the operator’s tune was already good and there’s 

not much room for improvement. In this case, the focus 

will be on how fast the model could tune the beamline com-

pared to the manual tuning by the operators, future work. 

 
Figure 2: Top – Beamline, Middle – Results for 14N3+ and 

Bottom – Results for 40Ar9+. Right – Initial data set in blue 

and model iterations in orange. Left – Model settings for 

best beam transmission vs. original operators’ settings. 

REINFORCEMENT LEARNING FOR 

FINE TUNING / CONTINEOUS CONTROL 

Reinforcement Learning (RL) is one of the three basic 

machine learning paradigms, alongside supervised and un-

supervised learning. RL does not require labelled data be-

cause it learns from interactions between an AI agent and 

its environment. The idea behind using RL to tune/control 

a particle accelerator arises from the complexity of the sys-

tem. In classic control, creating a large single function is 

more difficult than building a control system with piece-

wise subcomponents; however, this is where RL can help. 

In essence, RL maps situations to actions to maximize a 

numerical reward. There are different kinds of algorithms 

that can be applied, and the one selected here is Deep De-

terministic Policy Gradient (DDPG) [6], which is an “ac-

tor-critic” approach that mixes policy optimization and Q-

learning. Policy optimization methods tend to be more sta-

ble and reliable, and Q-learning is substantially more sam-

ple efficient. Although Q-learning is not consistent with 

continuous action spaces, which is the case of accelerators, 

DDPG supports continuous action spaces, because the 

critic only looks at the latest single action taken by the actor 

and does not try to find the best action by evaluating all of 

them. The actor is a neural network that takes what it thinks 

is the best action given the current state, as seen within the 

policy function method. The critic is a second neural net-

work that estimates the value of the state and the action that 

the actor took, as seen within the value function method. 

Simulation Results 

Using simulation data for the case of focusing an ion 

beam on target using a quadrupole triplet (3 parameters), 

an RL model was developed. Figure 3 shows the results 

from the training and testing of the model. In this case the 

quads are electrostatic and were varied between 2 and 10 

kV with alternating polarity and an action step of 0.25 kV. 

In the training results, we clearly see that the model learns 

the quads limits first, then starts learning how to focus the 

beam on target. In the testing results, the model quickly 

finds the quad setting to focus the beam on target from five 

different random starting points. 

  
Figure 3: RL model results for the triplet beamline (top). 

The training results (middle) show the model learning the 

quads limit first then starts the optimization by maximizing 

the reward. The testing results (bottom) show the model 

quickly converging on the same solution from five differ-

ent random starting points. 



Experimental Results 

For the experimental problem, we used the RFQ beam-

line, similar to the one used for the BO model, but varying 

two quad doublets and two steerer magnets, a total of 8 pa-

rameters, to maximize beam transmission. The electro-

static quads voltages were varied between 2 and 10 kV with 

action steps of 0.25 kV while the magnetic steerer current 

were varied between -1 A and +1 A with a step of 0.25 A. 

The model training results are shown in figure 4. We can 

see that the model started learning the limits for some of 

the parameters but didn’t start the optimization process. 

This is mainly due to the limited beam time for this exper-

iment. Although promising, this RL model will require a 

significantly longer time to converge than the BO model. 

A better approach would be to train the RL model offline 

first using simulation data, then re-train it and apply it ex-

perimentally online. Due to the direct control of the action 

step size, an RL model could be more useful for fine tuning 

and continuous control by watching the objective function 

and adjusting the beamline settings as they drift in time. 

 
Figure 4: Results of RL model training online for the RFQ 

beamline with two quad doublets and two steerer magnets 

to maximize the beam transmission. The results show the 

model started learning some parameters limits but will re-

quire more time to start the optimization process. 

AI/ML SUPPORTING THE COMMISSION-

ING OF A NEW BEAMLINE 

As mentioned above, a BO model could be developed us-

ing a minimal amount of data, which could be very useful 

for the commissioning of a completely new beamline. At 

ATLAS, we have recently built a new beamline for mate-

rial irradiation, AMIS (ATLAS Material Irradiation Sta-

tion). Figure 5 shows the new beamline consisting of two 

dipoles and a singlet. Not shown are a triplet and two steer-

ers on the main line and 10-deg line that are used to match 

the beam and direct it towards the AMIS target. 

Optimizing beam transmission 

A BO model was developed to maximize beam transmis-

sion using an initial data set of 20 randomly generated set-

tings for a quad triplet, two dipoles and two steerers. Figure 

6 shows the results for two attempts, both were successful 

improving the beam transmission from ~ 40 to 70%. 40% 

was the transmission obtained by a first tune by the opera-

tors. In the first attempt, the model found a glitch in the 

problem setup and took advantage of it. The first steerer 

happened to be before the first Faraday cup, and the model 

learned to optimize the transmission ratio by steering away 

the beam, thus minimizing the input current. In the second 

attempt, the first steerer was not included and the higher 

transmission was obtained for a higher beam current. 

 
Figure 5: AMIS line, recently built, being commissioned. 

 
Figure 6: BO model results to maximize beam transmission 

through the AMIS line leading to 30% improvement. 

Optimizing beam profiles 

Following the optimization of beam transmission, we 

added the task of optimizing the beam profiles at a given 

location by tuning only a triplet and a steerer. The results 

are shown in Figure 7. The online training clearly shows a 

slow but steady convergence, top plot, with clear improve-

ment in the beam profiles, lower plot. 

 
Figure 7: BO model results in optimizing the beam pro-

files. Model training showing slow but steady conver-

gence– top. Improvements in beam profiles – bottom. 
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