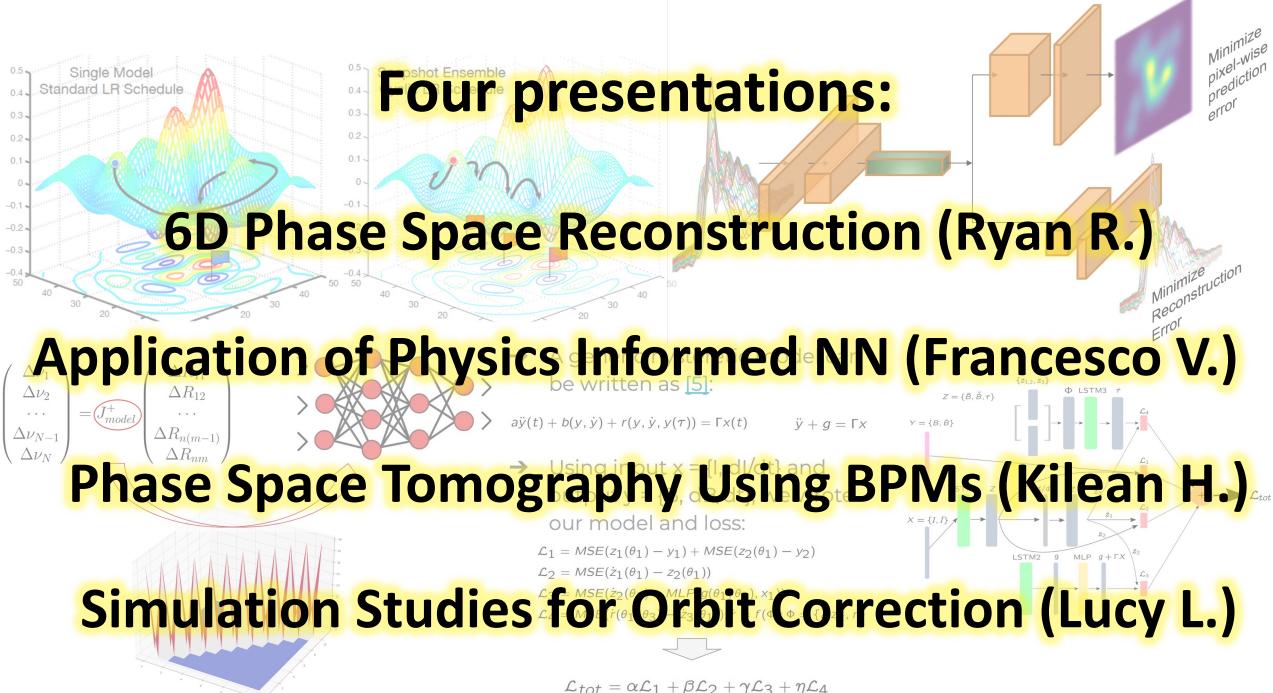
3rd ICFA Beam Dynamics Mini-Workshop on Machine Learning Applications for Particle Accelerators

Hosted by Brookhaven National Laboratory November 1–4, 2022

Summary Analysis Session

Chicago 4. November 2022

Raimund Kammering

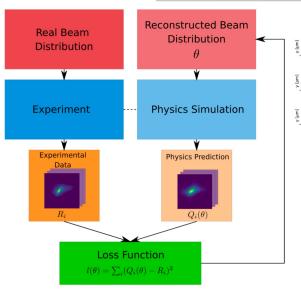


Ryan R.

Phase Space Reconstruction Using Neural Networks and Differentiable Simulations

SLAC

Inferring Beam Distributions Using Optimization



 $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0$

Scheinker, Alexander, et al Scient We can create detailed reconstructions

Represent beam distribution of beam phase spaces from simple tomographic accelerator measurements without special diagnostics measurements

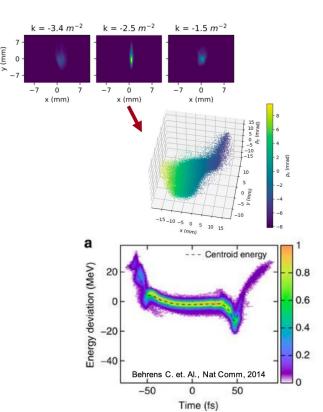
Reconstructions from differentiable simulations **are not limited** by analytical tractability, number of free parameters

Theoretically we are only limited by model detail and accuracy, **need further**

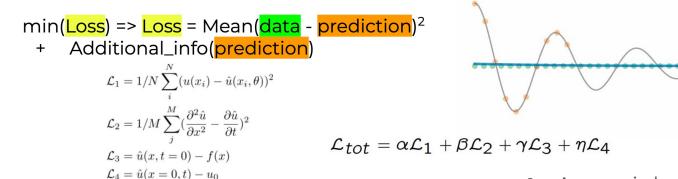
investment in differentiable simulations

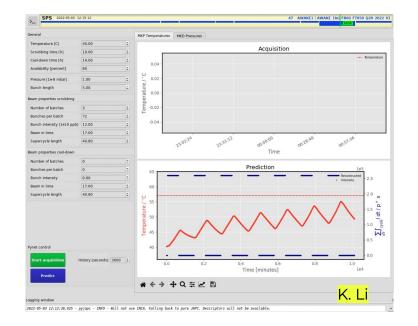
Need to expand our idea of what can be used as a diagnostic

ails https://arxiv.org/abs/2209.04505



Francesco V. Improving Neural Networks Predictions using Physics -PINN for the CERN Accelerators





→ A generic hysteretic model can be written as [5]:

 $a\ddot{y}(t) + b(y, \dot{y}) + r(y, \dot{y}, y(\tau)) = \Gamma x(t)$ $\ddot{y} + g = \Gamma x$

→ Using input x = {I, dI/dt} and output y = {B, dB/dt}, we wrote our model and loss:

$$\mathcal{L}_1 = MSE(z_1(\theta_1) - y_1) + MSE(z_2(\theta_1) - y_2)$$
$$\mathcal{L}_2 = MSE(\dot{z}_1(\theta_1) - z_2(\theta_1))$$

- $\mathcal{L}_{3} = MSE(z_{2}(\theta_{1}) + MLP(g(\theta_{1}, \theta_{2}), x_{1}))$
- $\mathcal{L}_4 = MSE(\dot{r}(\theta_1, \theta_3) \dot{z}_3(\theta_1)); \dot{r} = f(\Phi); \Phi = \{\Delta z_2, r\}$

$$Z = \{\vec{B}, \vec{B}, \tau\}$$

$$Y = \{B, \vec{B}\}$$

$$LSTM1 Z$$

$$d/dt Z$$

$$z_3$$

$$LSTM1 Z$$

$$d/dt Z$$

$$z_3$$

$$LSTM2 g$$

$$MLP g + \Gamma X$$

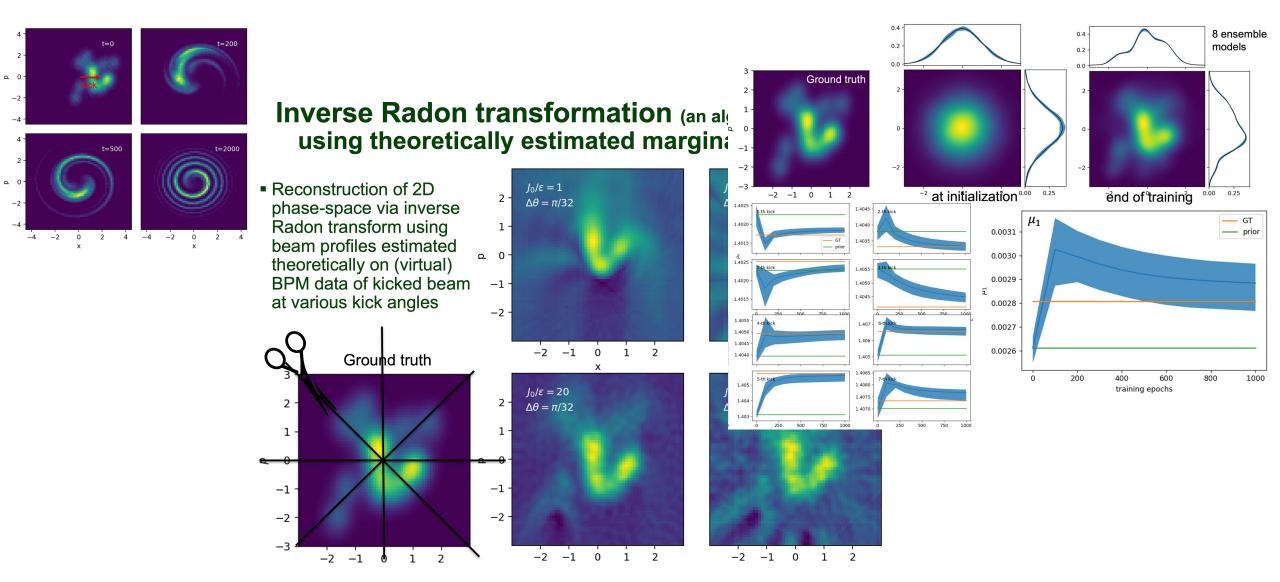
$$z_3$$

$$LSTM2 G$$

 $\{\dot{z}_{1,2}, z_3\}$

 $\mathcal{L}_{tot} = \alpha \mathcal{L}_1 + \beta \mathcal{L}_2 + \gamma \mathcal{L}_3 + \eta \mathcal{L}_4$

Kilean H. Transverse 2D Phase-Space Tomography Using BPMs

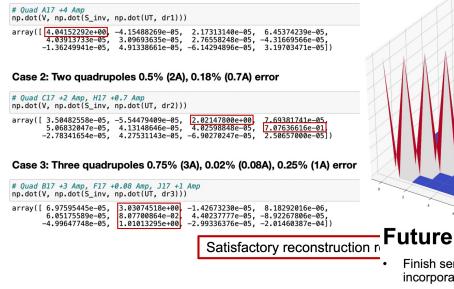


Lucy Lin Simulation Studies and Machine Learning Applications for Orbit Correction at the Alternating Gradient Synchrotron

Test case: reconstruct errors with J model

• Reconstructed error = quadrupole power supply current

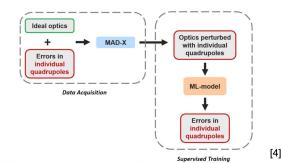
Case 1: One quadrupole 1% (4A) error



$\frac{e-05}{e-05}$ $\frac{e-05}{e-05}$ (1A) error $\frac{e-06}{e-04}$ e-06, e-06,

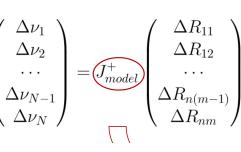
Finish sensitivity scan to determine relevant error sources: snake magnet incorporation to Bmad using field maps in progress

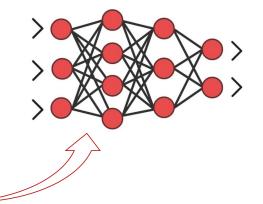
- Make simulation more realistic: add Gaussian noises to both magnets and BPMs
- Establish a dynamic retraining routine to keep model updated during operation



Sensitivity studies for ORM

- Scan through some common sources of error to see how much ORM changes
- Find relevant parameters to include for building error-detecting model
- **Goal:** establish a neural network that identify error source given a measured ORM





Thanks for a very productive and informative workshop!

Our community speeded up enormously in terms of adapting up-to-date ML techniques

Looking forward to the next workshop