
Storage options and strategy
at the US ATLAS Tier 1 Facility

ATLAS Pre-Scrubbing Review - June 27, 2022

Qiulan Huang <qhuang@bnl.gov>, Vincent Garonne <vincent.garonne@bnl.gov>
Shigeki Misawa <misawa@bnl.gov>, Tejas Rao <raot@bnl.gov> 
Robert Hancock <hancock@bnl.gov>, Doug Benjamin <dbenjamin@bnl.gov>

Scientific Data and Computing Center (SDCC)

mailto:qhuang@bnl.gov
mailto:vincent.garone@bnl.gov
mailto:misawa@bnl.gov
mailto:raot@bnl.gov
mailto:hancock@bnl.gov


Motivation

2

Steady increase in ATLAS needs for DISK** storage capacity
● Projected reductions in DISK cost/TB not keeping up with needs requiring ATLAS to reduce disk 

storage requirements
● No budget to continue with dCache and two DISK copies (timeline: FY23)

                                                                                                                    ** TAPE is no concerned
Storage “Ecosystem” have changed over the years

● Changes in access software (e.g., dCache, XRootD, EOS, DPM)
● New storage software stacks (e.g., Ceph, Lustre, MinIO, …)
● New data protection schemes (e.g., distributed RAID, erasure coding)
● Hardware capabilities have changed

○ Network bandwidth
○ Server capability
○ HDD bandwidth/capacity

● ATLAS Storage Environment has changed
○ Migration to new transfer protocols (WebDAV/XRootD), storage tokens, …

An opportunity to revisit current implementation in view of forthcoming requirements for HL-LHC

○ SSD capacity/performance
○ Overall hardware reliability



US ATLAS Tier 1 Priorities

Ensure that storage services meet current and future requirements
○ Proven performance and capacity scalability (to meet projected ATLAS 

requirements)
○ Access protocol support
○ Service availability and reliability
○ Cost efficient system architecture and implementation
○ Sustainable operational costs
○ Long term viability of the storage system

Any changes to US ATLAS Tier 1 storage services need to be 
transparent to ATLAS operations

3



Critical Storage System Characteristics

● Mature software, with well worn code paths when run in the ATLAS 
operational environment

● Tolerant of component failures
○ In worst case, graceful degradation of service

■ Avoid service loss if possible
○ Automatic self healing
○ Minimize time spent in a degraded configuration

● Immunity to hot spots within a node and across nodes
● Multiple levels of data protection within the system

○ E.g. node level or disk level, depending on the requirements
● Efficient utilization of hardware resources
● Simple and transparent system. No unnecessary complexity

○ Operational simplicity
○ Simple software and hardware configuration and upgrades

4



Storage Components

5

1. Access Layer Frontend
Client access protocol support (e.g., WebDAV, XRootD, …)

2. Unified Storage System Layer
Organizes the storage blocks provided by the backend into 
a coherent and unified storage space for storing user data

3. Backend Storage Layer
Creates the storage “blocks” (space) used by the storage 
system to store user data

The complete storage system 
may be implemented by one 
software package or a set of 
software packages working in 
concert



Current vs HL-LHC Scale

6

Access Layer Frontend

Unified Storage System Layer

Backend Storage Layer

HL-LHC Tier 1 dCache

dCache: doors (~20)
Peak write traffic: ~36GB/s
Peak read traffic: ~28GB/s
Peak deletion traffic: ~300Hz

dCache: Pool Nodes(~60), 
services, DB, ..
Disk capacity: 54PB
170M name space objects

SAS JBOD storage

dCache: doors (~200)
Peak write traffic: ~360GB/s
Peak read traffic: ~280GB/s
Peak deletion traffic: ~3KHz

Current Tier 1 dCache

dCache: Pools (~600), 
services, DB, ..
Disk capacity: 540PB
1.7B name space objects

SAS JBOD storage

Straight 10x scaling raises concerns over scalability of current system 



Storage Components: Concerns

7

Current Tier 1 dCache

● Pool nodes - single point of failure
● Poor load balancing over pool nodes
● File replication only mechanism for higher level 

data protection

● Poor load balancing over pools (in one pool per 
RAID6 LUN configuration)

● Disk rebuild times continue to grow, increasing 
likelihood of data loss

Operational concerns

With projected Run 4 Configuration (X10) 
⇒ Concerns over scalability

dCache: doors (~20)
Peak write traffic: ~36GB/s
Peak read traffic: ~28GB/s

Peak deletion traffic: ~300Hz

dCache: Pools (~60), services, DB, ..
Disk capacity: 54PB

170M name space objects

 SAS JBOD storage
Linux MD RAID

7 x RAID6 (12+2) LUN
One LUN per dCache Pool

● “Stalled” doors
● Problematic NFS support



Storage Components: Evaluation

8

1. Access Layer Frontend
Client access protocol support (e.g., WebDAV, XRootD, …)

2. Unified Storage System Layer
Organizes the storage blocks provided by the backend into 
a coherent and unified storage space for storing user data

3. Backend Storage Layer
Creates the storage “blocks” (space) used by the storage 
system to store user data

Evaluated components

dCache | XRootD

dCache | XRootD + Lustre

OS level:
● Linux Software RAID (MDRAID)
● OpenZFS

Software defined:
● Ceph
● Lustre



Storage Components: Evaluation

9

1. Access Layer Frontend
Client access protocol support (e.g., WebDAV, XRootD, …)

2. Unified Storage System Layer
Organizes the storage blocks provided by the backend into 
a coherent and unified storage space for storing user data

3. Backend Storage Layer
Creates the storage “blocks” (space) used by the storage 
system to store user data

Evaluated components

dCache | XRootD

dCache
XRootD

OS level
● Linux Software RAID (MDRAID)
● OpenZFS

Software defined:
● Ceph
● Lustre

Multiple combinations of unified Storage Layer and backend 

Storage are possible.



Possible dCache Deployment

1010

ZFS

  dCache Doors
WebDAV, Xrootd

dCache Pool 
Nodes

Ceph

Pool_1, …, Pool_10 Pool_1, …, Pool_10Pool_1, …, Pool_10

MDRAID

Current dCache 
Configuration

HDD1, …, HDDN

Erasure Coding with high 
availability/reliability

• ZFS has Efficient 
data compression, 
snapshots, and 
copy-on-write 
clones. 
• Great scalability 
and support for 
nearly unlimited 
data and metadata 
storage capacity



        XRootD

Possible XRootD Deployment

1111

MDRAID

Lustre

        XRootD

Ceph

ZFS

OR

HDD1, …, HDDN

No
t T

es
te

d

Current 
BNLHPCDISK 

(preproduction) 
configuration 

For large IO 
performance, Lustre 
is known to be the 
leader with high 
scalability and 
stability

Lightweight 
and popular 
solution 
providing the 
grid protocols



Backend Storage Layer : OS Level

Multi-vdev/Striped RAID-N/dRAID
● Better disk level load balancing relative to individual RAID-N/RAIDzN LUNs
● Larger data loss in case of vdev or RAID-N failure for multi-vdev/Striped 

RAID-N
● dRAID failure modes different from multi-vdev Zpool and striped RAID-N

○ Faster data rebuild compared to RAIDzN and RAID-N

12

OpenZFS
● Single RAIDz2 vdev Zpool

● Single RAIDz3 vdev Zpool

● Multi-vdev Zpool

● dRAID “distributed” RAID

LINUX MDRAID
● RAID-6 LUN

● No equivalent

● Striped RAID-N LUN

● No equivalent



OpenZFS vs MDRAID
OpenZFS advantages over MDRAID

● Better error detection/correction via block checksum(no bitrot / RAID 5 write hole issues)
● Variable stripe size with RAIDZn (but not with dRAID)
● ARC cache provides automatic high speed tier for hot workloads in RAM
● No spurious disk expulsion from RAID due to transient effects.
● Faster failed disk rebuild time with dRAID compared to RAID-N/RAIDzN

○ But relatively new, released in OpenZFS 2.1 (mid-2021)

MDRAID advantages over OpenZFS
● Supported by Redhat
● Faster rebuild on very full LUNs (compared to ZFS RAIDzN)
● No performance penalty for > 85% capacity usage
● Less capacity overhead for similar configuration

13



Capacity Comparison (TiB)

14

Test Name ZFS
20x5

ZFS 
10x10

ZFS 
14x7

MD RAID 
20x5

MD RAID 
10x10

MD RAID
14x7

Full Capacity (TiB) 1132 970 1024 1150 1020 1071

Overhead Factor 1.148 1.339 1.269 1.133 1.286 1.214

Configurations for 100+ disk JBOD Chassis



Reasons for switch to ZFS
● Better data integrity

○ Per block checksums verified every read
○ Auto healing corrupted data

● Separate filesystems in same Zpool can be tuned to data access patterns 
(metadata / large files )

● Automatic load balancing across LUNs
● Built in hot file cache (ARC) in memory
● (future) dRAID can significantly lower rebuild times to reduce risk of concurrent disk 

failures
● Reduced manual intervention

○ No manual intervention on reboot required
○ No false positive failed disks.
○ Less complicated / manual steps for disk replacement

15



FIO Bandwidth comparison (GBytes / sec)

16

ZFS/MD RAID Configuration (disks/LUN) x (# LUNs)

Test Name ZFS 
20x5

ZFS 
10x10

ZFS 
14x7

MD RAID 
20x5

MD RAID 
10x10

MD RAID
14x7

Seq Read 10.339 9.610 9.119 5.230 8.031 6.862

Seq Write 3.969 3.837 3.874 2.719 4.480 3.789

64k Rand Write 0.233 0.226 0.228 0.175 0.393 0.239

64k Rand Read 0.528 0.686 0.772 1.609 3.181 2.740

8k Rand Write 0.029 0.028 0.028 0.026 0.057 0.041

8k Rand Read 0.300 0.247 0.208 0.540 0.539 0.544



FIO IOPS Comparison

17

ZFS/MD RAID Configuration (disks/LUN) x (# LUNs)

Test Name ZFS 
20x5

ZFS 
10x10

ZFS 
14x7

MD RAID 
20x5

MD RAID 
10x10

MD RAID
14x7

Seq Read 10586 9840.9 9337.5 5353.7 8224.1 7026.3

Seq Write 4064.1 3929.2 3966.7 2784.6 4587.9 3879.6

64k Rand Write 3819.4 3697.8 3738.7 2861.1 6436.9 3921.6

64k Rand Read 8648.1 11242 12651 26363 52115 44899

8k Rand Write 3838.7 3689.1 3735.1 3350.5 7497.7 5312.8

8k Rand Read 39383 32326 27198 70744 70685 71343

Some additional discussion of differences for random reads might be found in 
the Arstechnica article ZFS versus RAID: Eight Ironwolf disks, two filesystems, one winner | Ars Technica

https://arstechnica.com/gadgets/2020/05/zfs-versus-raid-eight-ironwolf-disks-two-filesystems-one-winner/


ZFS FIO Bandwidth (GBytes / sec)

18

Seq Read
(bs=1M)

Seq Write
(bs=1M)

64k rand 
read

64k rand 
write

8k rand 
read

8k rand 
write

RS=1M 9.610 3.837 0.686 0.226 0.247 0.028

RS=64k 3.209 1.483 1.380 1.199 1.085 0.151

1MB ZFS recordsize (RS) used in previous tests are valid for large average file sizes. 
However, a large recordsize reduces performance for small request sizes, e.g. database.
Effect of reducing recordsize from 1M to 64K on a 10x10 ZFS configuration are shown 
below:



Backend Storage Layer: Ceph

Erasure Coding - Primary motivation for looking at Ceph
● Higher availability/reliability compared to single copy dCache 

with OS level backend disk (mdraid/zfs)
● Potentially lower $/TB compared to file replication in dCache
Three possible dCache pool configurations:
● Pool on XFS file system on Ceph “Rados Block Device” (RDB)
● Pool on CephFS file system
● Pool on Ceph S3/Swift object storage using librdb 

○ With “pool.backend = ceph” dCache configuration

19



Hardware requirements for a Ceph cluster

• 4GB/OSD memory is recommended for Bluestore backends. 8GB/OSD is advised for 
large datasets

• This equates to 5120 OSD devices for 20PB usable storage assuming 12TB 
drives, so about 20TB of RAM is required. Approximate cost is $544K for 20TB 
of RAM @ $26.5/GB. 

• 128GB RAM is recommended for Ceph monitors and manager nodes. Three 
dedicated monitor/manager nodes are recommended. 

• DB/WAL storage block devices should be on dedicated SSD drives and capacity 
should be at least 4% of block device. 

• This equates to 1040TB of storage capacity on dedicated SSD drives for 20PB usable 
storage. 

Assuming Dell 3.84TB SAS mixed use SSD is $4310, this will be $1.1M. 
The $1.1M cost is based on 20PB of usable storage with (8+3) erasure coding and no replication for 
DB/WAL SSD devices.

20



Ceph — Cost
● The hardware requirements for Ceph are very high which leads to 

higher net cost compared to Lustre
○ Higher memory/CPU requirements on the Ceph OSD nodes and 4% of raw 

capacity on SSDs
○ For  XFS/ZFS, RAID6 is a viable option even with higher capacity drives. 

● For usable capacity of 20PB disk storage
○ Ceph would need $544K for RAM and $1.1M for DB/WAL storage, for a total 

of about $1.6M . 
○ XFS/ZFS would need $68K for RAM (128GB X 20 nodes @ $26.5/GB) and 

$4K for metadata storage.

● Just for metadata storage and RAM, Ceph is 20X more.

21



Ceph — Performance

● Performance for the Ceph kernel block device and CephFS as a 
backend filesystem was only 40% of hardware capabilities for large 
sequential IO.

○ For 60 drives, streaming performance was around 2780MB/s for reads and 
1100MB/s for writes.

○ Significantly higher fraction of HW performance is achieved with 
Lustre on same HW 

● Poor performance with Ceph when data is on flash media
○ At best 25% of hardware capabilities for sequential workloads. 

22



Ceph — Performance
● Dedicated network links are required for replication and recovery traffic and average 

performance during major recovery/scrub periods is poor.
● Recovery and scrubbing can potentially impact service availability for large periods of 

time while WLCG requires 99% uptime by MOU/SLAs.

23Sequential Read/write performance of Ceph and Lustre on same hardware



24

Ceph — Other factors

• Ease of management.
Ceph is not trivial to setup. One has to be very careful with how crush maps 
and cache tiering is configured to get it to work correctly otherwise performance 
would be impacted and data would not be distributed evenly. Troubleshooting is 
also not straightforward as most ceph services run in a containerized 
environment.

• Enterprise support 
Ceph licensing model for enterprise support is capacity based and is 
prohibitively expensive. List pricing is $160K/PB/year for Redhat Ceph 
enterprise support. Lustre, on the other hand, has a site-wide license option 
based on the number of incidents and is not capacity-based. 



25

Ceph — Conclusion

● Cost 
Hardware requirements for DB/WAL storage and RAM is very high compared to other storage 
solutions. 

● Enterprise support
Enterprise support for Ceph is prohibitively expensive.  

● Performance
Streaming sequential performance is lower at 40% of hardware capabilities.

● Ease of management.
Troubleshooting and management of Ceph services could be complex as services run in a 
containerized environment. 

Ceph was not adopted as a long term solution for ATLAS



Evaluated Storage Software Stacks

2626

MDRAID

ZFS
Lustre

  dCache Doors
WebDAV, Xrootd

dCache Pool 
Nodes

Pool_1, …, Pool_10
Pool_1, …, Pool_10

ZFS

MDRAID

        XRootD

dCache + zfs disks 
• Provides additional data assurance 
relative to dCache + MDRAID
• Can be used to compare MDRAID vs 
ZFS performance in ATLAS production 
environment

XrootD + Lustre
• Ability test performance 
of alternative full stack



Testbed: Hardware

27

10 Servers with identical HW specifications
● 5 Servers configured as Lustre OSS servers
● 5 Servers configured as dCache

Allows “apples to apples” comparison between Lustre and dCache

Lustre Disk Organization
● 10 x (8+2) RAID 6 LUNs
● One LUN one OST

dCache Disk Organization
● Single ZFS zpool
● 5 vdevs per zpool
● Each vdev configured as 20 disk RAIDz2

Server HW specifications
● 384GB RAM, 36 cores (18 cores/CPU)
● Network - 2 x 25 Gbps = 50Gbps
● One JBOD per server



Testbed: XRootD+Lustre Deployment

28

XRootD+Lustre
● Lustre MDS - Lustre v2.12.8

○ One VM - 1TB HDD disk, 16 cores, 64GB RAM
● Single Lustre file system constructed from 5 OSS servers (previous slide)
● 5 standalone XRootD servers

○ Lustre filesystem accessed via standard Lustre kernel client module

Monitoring:

🐠Barreleye



Testbed: dCache Deployment

29

dCache v7.2.3

dc247

Pools
Pool_1, …, Pool_10

dc248

Pools
Pool_1, …, Pool_10

dc245

ZookeeperPostgres

Core cells
topo, billing, pnfsmanager, 
poolmanager, pinmanager, 
gplazma, spacemanager, 
srmmanager, cleaner, info

dc246

Zookeeper

Core cells
topo, billing, pnfsmanager, 
poolmanager, pinmanager, 
gplazma, spacemanager, 
srmmanager, cleaner, info

dCache + ZFS disks

Pools
Pool_1, …, Pool_10

Pools
Pool_1, …, Pool_10

dc249

Pools
Pool_1, …, Pool_10

29

dCache Door dCache Door dCache Door dCache DoordCache Door

Monitoring:



dCache/XRootD Access Layer

dCache or XRootD required to allow storage system to work within 
the ATLAS distributed storage environment
● ATLAS RSE protocol support requirements defined at: 

https://twiki.cern.ch/twiki/bin/view/AtlasComputing/StorageSetUp#Protocols

30

[1] XrootD configuration with 
Lustre  backend refined with 
XrootD core team

[2] TPC - Third Party Copy

[3] Problems with xrootd protocol 
support in XRootD with Lustre 
backend

Protocol
XRootd + Lustre [1] dCache + zfs disks

TPC[2] Direct read/write TPC Direct read/write

davs / https ✓ ✓ ✓ ✓

xroot Disabled
[3]

✓ ✓ ✓

Not required for ATLAS RSEs

https://twiki.cern.ch/twiki/bin/view/AtlasComputing/StorageSetUp#Protocols


TPC - Write Stress Tests

31

TPC Copy Configuration 
● Scripted bulk FTS transfers 
● Files: 500K, Max active limit (FTS): 1200 

Source
● Production ATLAS dCache 

(Datadisk & Scratchdisk)

Testbed
● dCache + ZFS disks
● XRootD + Lustre

TPC write

FTS

Goal:  Saturate the 
different storage 
configurations and sustain 
the peak rates with 
production data



How to compare XRootD vs. dCache ? 

3232

MDRAID

ZFS
Lustre

  dCache Doors
WebDAV, Xrootd

dCache Pool 
Nodes

Pool_1, …, Pool_10Pool_1, …, Pool_10

ZFS

MDRAID

        XRootD

Different backends:
  •  ZFS vs Lustre
Different front ends:
  • dCache vs XrootD



dCache + Lustre !

3333

MDRAID

ZFS
Lustre

  dCache Doors
WebDAV, Xrootd

dCache Pool 
Nodes

Pool_1, …, Pool_10Pool_1, …, Pool_10 Pool_1, …, Pool_10

ZFS

MDRAID

        XRootD

dCache + Lustre
Allows direct comparison 
between:
   • dCache and XRootD (as 
backend is identical to 
XRootD+Lustre)
   • ZFS and Lustre (as 
frontend is identical to 
dCache + ZFS)

Caveat: dCache + Lustre is not considered 
as an option. May be of interest if erasure 
code is supported in future Lustre versions



TPC - Write : Stress Tests

34

Davs TPC XRootd + Lustre dCache + Lustre

Aggregate 
traffic of doors

26GB/s
(around 16-17GB for backend Lustre,
Extra traffic is caused by checksum)

         The effective traffic is around 3.4GB/s per door

~21GB/s
4.2GB/s per pool node

CPU Usage ~10% per door ~15% per door, ~ 50-60% per 
pool node

Checksum Compute checksum needs reading back, which 
causes extra traffic                                       

Checksum computed on the fly

Success rate >98.5% >98%

Comments 1) It needs more doors to saturate backend Lustre 
performance because of the extra traffic caused by 
checksum
2) Some door behave slowly with high CPU usage that 
degrades cluster performance

1)Higher CPU usage of dCache 
nodes, probably related to Java

Preliminary numbers



Xrootd vs dCache Checksum
● dCache calculates checksum as the file is received or written to disk, i.e., “on the fly”
● XRootD calculates checksums after the file has been written to disk

○ OS/Lustre client caches aren’t large enough to buffer file content
○ File read from backend storage increasing load on network and backend OSSes

● Observed errors during stress tests, most of which are checksum related issues:

35

Error Description Lustre+xrootd dCache Comments

Recoverable error: [110] DESTINATION CHECKSUM 
timeout of 1800s ✗  ✗ From FTS side

Recoverable error: [5] DESTINATION CHECKSUM 
HTTP 500 : Unexpected server error: 500

  ✓ ✓ Fixed by increasing max value for check

max>=512(According to tuning tests)

Some xrootd doors will degrade 
with high CPU usage ✗ ✓ Degradation of xrootd door performance. 

Suspect it’s related to the checksum

 ✗ : Exist
✓:  Fixed



Bulk deletion: 500k files
Davs DEL XRootd + Lustre dCache + Lustre

 Rate 141.79Hz 201Hz

CPU Usage <2% per door <2% per door

Comments dCache with Lustre pool get the best performance, 
but some contention observed

36

Preliminary numbers



Decision matrix

37

Current
dCache
(MDRAID (14x7))
(2x 1.21)

Unreplicated 
dCache (MDRAID 
(14x7))
(1x 1.21)

dCache + Ceph dCache + 
disk(zfs (14x7)) 
(1x 1.27x)

XrootD + 
Lustre
(1x 1.29x)

$/Usable Byte
(Arbitrary unit) 1.0 ✗ 0.5 ✓  ✗ 0.52 ✓ 0.53 ✓

Ops effort 2 FTEs >= + >= >=

A&R ✓ ? ✓ + ? ✓               ? + ?

Replication X 2 X 1 X 1.25 (12+3) X 1 X 1

High 
Availability

✓ ✓ ✓ ✓ ? + ?

... ... ... ... ... ...



Summary

38

We have gain expertise and operational experience on alternate storage options
● Ceph
● OpenZFS (timescale: Q4 2022) 
● dCache, XRootD + Lustre

All alternate configurations provide the ATLAS needed functionalities
● XRootD + Lustre — XRootD maturity ?

Methods and tools (testbed, monitoring, etc) in place for further evaluation and decide 
on the optimal option for future storage (timescale: Q1 2023)
● Performance: XrootD Lustre vs. dCache for TPC read, etc.

Any changes to US ATLAS Tier 1 storage services need to be transparent to 
ATLAS operations (change management)



Backup

39



TPC-Write: Dcache+Lustre VS XRootD+Lustre

40

● 5 doors IO traffic: 
~21 GB/s

● 4.2GB/s per pool 
node  from 
dCache

● No extra traffic 
from checksum

Backend is dCache with Lustre pools

dCache+Lustre
CPU usage

Around 21GB/s 

● 5 doors IO traffic: 
26GB/s, around 
16-17GB for
Lustre IO

● The effective 
traffic is around 
3.4GB/s per door

● 9-10GB/s traffic is 
caused by 
checksum, 

Backend is Lustre

Around 17GB/s for Lustre

XRootD + Lustre
CPU usage



Lustre vs dCache: Direct read/write

41

root:// Write Read Delete

dCache+localdisk 54.57 22.18 1.75

XRootd+Lustre 54.12 21.55 2.16

10 X time -p gfal-copy file_randombytes_2G <scheme>://<host>/<path>/file<i>

10 X time -p gfal-copy -f <scheme>://<host>/<path>/file<i> /dev/null

10 X time -p gfal-rm <scheme>://<host>/<path>/file<i>

➔ For xrootd protocol: two configurations behave similarly



Lustre IO performance testing
● IOZONE testing

○ write/rewrite, read/reread and stride read
○ Peak write IO throughput: ~5.7GB/s per OSS(see next slide)

■ Network ring buffer for the nics increase from 1024 to 4096
○ File size

■ Large size:50GB
■ Average Atlas file size: 0.9GB

● Test results before optimizing network parameters

42

 Nodes# Process# Filesize Block size Write Read Offset Stride Read

large 

file size

5 270 50G 1M 24.5GB/s 6.9GB/s 2M 1.6GB/s

 Avg Atlas 
file size

5 270 0.9G 1M 22.1GB/s 10GB/s 2M 7.6GB/s



Peak write throughput per OSS
Optimization:  network parameter (ring buffer for the nics to 4096 from 1024)

43

i=0 Client# Process# File size Record size initial writers rewriters
5 180 50G 1M 28579415.15 

kB/sec
28588751.47 
kB/sec

5 180 900M 1M 26102364.69 
KB/sec

28207374.36 
KB/sec



Mdtest- Metadata performance of Lustre
● Install and configure mdtest/MPI env
● 5 clients, 180 processes
● Metadata performance is good. Higher performance possible if SSDs are used instead of HDDs
● More details:

○ https://docs.google.com/document/d/1fNdgHLXNS4D0pQYZSkyFl086QLTtyV9P/edit#

44

➢ File creation:~3000 IOPS
➢ File stat: ~60000 IOPS under 

shared dir
➢ File read: ~30000 IOPS
➢ File delete: ~16000 IOPS
Higher IOPS in unique dir than 
shared dirs
Observation: dCache not support 
MPI 
MPI_ABORT was invoked on rank 2 in communicator MPI_COMM_WORLD 

with errorcode -1.

NOTE: invoking MPI_ABORT causes Open MPI to kill all MPI processes.

You may or may not see output from other processes, depending on

exactly when Open MPI kills them.



Lustre vs dCache POSIX Performance

45

● Lustre - Standard in kernel Lustre client access
● dCache (w/ local pools) - NFS mount dd 2GB file

dCache 121 MB/s

Lustre 170 MB/s

● Simple dd of 1GB file
○ dd if=/dev/urandom of=sample.txt bs=1G count=60

● First observation: dCache does not support all nfs methods for iozone.

$ cd /pnfs/experimental.bnl.gov/data/atlas/ 
$ iozone -Rac -i 0 -i 1
…
close: Operation not permitted  or fsync: Operation not permitted
…
exiting iozone

Protocol Posix

dCache Not fully support

Lustre ✓



Lustre (Release 2.14)

● POSIX-like file system
● Scale out/up features

○ Striping over LUNS
○ Horizontal OSS scaling (striping over nodes) capacity and performance
○ DNE Distributed Name Space horizontal namespace scaling
○ Storage Tiering for performance (SSD/HDD)

● Higher level reliability
○ File Replication (Release 2.13)
○ Erasure code - Still in development. Targeting release 2.15

● HA features
○ HA OSS configurations possible
○ HA MDS configuration

46


