STAR Detector:

A SIMPLE OVERVIEW.
BROOKHAVEN NATIONAL LABORATORY SECTION.
LEONARDO PENA.
Table of Content

- Overview
- Detectors
 - FST
 - MTD
 - TPC
 - TOF
 - DAQ
 - sTGC
- Conclusion
STAR Detector

- The STAR (Solenoidal Tracker at RHIC) is one of two still standing experiments in the Relativistic Heavy Ion Collider

- Main Purpose:
 - Study the qualities of the Quark-Gluon Plasma (QGP)

- To accomplish this, STAR has a number of Detectors.
Forward Silicon Tracker (FST)

- Closest to the Tube
- Highest Quality
- Very Expensive
- More in-depth functionality?
Time Projection Chamber (TPC)

- Makes up the majority of STAR
- Uses gas for the detection of charged particles
- Ionization is the main way of detection
Time of Flight (TOF)

- Helped in improvement of identification
- Gas Detector
- MRPC (Multigap Resistive Plate Chamber)
- Exact functionality?
Muon Telescope Detector (MTD)

- Measures μ pairs
- Used to identify the creation of J/ψ
- QGP Formation
Heavy Flavor Tracker (HFT)

- No longer in STAR
- Detects Heavy Quarks
 - Charm & Bottom
- Usually in $c\bar{c}$
- High Resolution
Data Acquisition (DAQ)

- Act as triggers for the amount and type of data that we want to collect
- Collection of Coordinated Detectors
- Data Collection is greatly improved.
Small-strip Thin Gap Chambers (sTGP)

- Forward Detector
- Wire planes that make a Three-Dimensional Image in a gas medium.
- Used for tracking
Conclusion

- STAR has a lot of detectors, too many to be summarized in a simple presentation.

- STAR has let us advance our understanding in the QGP and its properties

- Perhaps more?

- Future?