# TOF detector simulation tutorial and next steps

Det1 TOF Meeting June 13, 2022

**Nicolas Schmidt** 







### **Tutorial - Fun4All Code**



- ECCE Singularity: [github.com/ECCE-EIC/Singularity]
  - $\rightarrow$  contains nightly build of ECCE-EIC code
  - $\rightarrow$  recommended to use when running EIC Fun4All simulations
- Fun4All base classes: [github.com/ECCE-EIC/coresoftware]
  - $\rightarrow$  contains classes for tracking, DST tree, physics lists, HepMC, hits, event generators, ...
- Detector base classes: [github.com/eic/fun4all\_eicdetectors]
  - $\rightarrow$  contains full detector implementations (geometry, active/passive volumes, visualization, stepping action, ...)
  - $\rightarrow$  TTL detector class located here: PHG4TTLDetector.cc
  - ightarrow also contains special reconstruction classes (e.g. TowerBuilder, Digitizer, ...)
  - $\rightarrow$  EventEvaluator class for analysis output located here
- Detector (configuration) macros: [github.com/ECCE-EIC/macros]
  - $\rightarrow$  contains steering code for different detector setups (e.g. loading of different geometries, calibrations, exclusion of detector systems from simulation, ...)
- Detector geometry inputs: [github.com/ECCE-EIC/calibrations]

 $\rightarrow$  contains geometry input files (loaded in "macros"), e.g. tower position files for calorimeters, support input files from CAD, field map, ...)



# **Tutorial - Running simulations**



#### • Use ECCE Singularity:

singularity shell -B cvmfs:/cvmfs cvmfs/eic.opensciencegrid.org/singularity/rhic\_sl7\_ext.simg

- Source environment ([LOCALLIBS] is path to locally compiled code, e.g. \$HOME/install): source /cvmfs/eic.opensciencegrid.org/ecce/default/opt/fun4all/core/bin/ecce\_setup.sh -n source /cvmfs/eic.opensciencegrid.org/ecce/gcc-8.3/opt/fun4all/core/bin/setup\_local.sh [LOCALLIBS]
- Move to detector steering macro e.g. ECCEModular folder and run code: root.exe

Fun4All\_G4\_ECCEModular.C(NEVT,PTLOW,PTHIGH,"DETSETTING","MCSETTING","INPUTFILE")

- NEVT = number of events
- **PTLOW/PTHIGH** =  $p_{T}$  or p range for single particles (-1 when using event generators)
- DETSETTING = special detector setups as a single string e.g. "STANDALONE.CTTL.ETTL.PIPE.display" for default Det1 setup use empty string ""
  - $\rightarrow$  "STANDALONE" to only simulate detectors listed in DETSETTING string
  - $\rightarrow$  "NOFIELD" to deactivate magnetic field
  - ightarrow "display" to use GEANT geometry visualizer (for less complex geometry also interactive "displayviewer" can be used)
- MCSETTING = single particle or event generator switch, e.g. "SimpleElectron"
  - $\rightarrow$  "Single(Multi)Pion(fwd)" various options available for single particles (single particle, multiple particles, focuses on certain region, ...)
  - ightarrow all basic particles can be selected in macro (add more if you want)
  - $\rightarrow$  "PYTHIA6" or "PYTHIA8" when using generator, requires INPUTFILE to be set e.g. "phpythia6\_ep18x275\_q2\_100.cfg"

#### • To show current detector setup:

root.exe Fun4All\_G4\_ECCEModular.C(1,0.3,30,"display","SimplePion","")





# **Tutorial - Modifying and Compiling Code**



#### How to compile code changes in coresoftware or fun4all\_eicdetectors:

• Use ECCE Singularity:

```
singularity shell -B cvmfs:/cvmfs cvmfs/eic.opensciencegrid.org/singularity/rhic_sl7_ext.simg
```

- Source environment ([LOCALLIBS] is path to locally compiled code, e.g. \$HOME/install): source /cvmfs/eic.opensciencegrid.org/ecce/default/opt/fun4all/core/bin/ecce\_setup.sh -n source /cvmfs/eic.opensciencegrid.org/ecce/gcc-8.3/opt/fun4all/core/bin/setup\_local.sh [LOCALLIBS]
- Prepare build and compile code (e.g. for TTL): cd fun4all\_eicdetectors/simulation/g4simulation/g4ttl mkdir build cd build ../autogen.sh --prefix=[LOCALLIBS] make install
- Changes will now be used if the [LOCALLIBS] path is sourced before running the detector macro, via: source /cvmfs/eic.opensciencegrid.org/ecce/gcc-8.3/opt/fun4all/core/bin/setup\_local.sh [LOCALLIBS]



### **TTL Layers in Geant4**





#### Support:

#### Services:

#### Sensor:

|                                                 |                                         |                                                 |                                                |                                        |                         | -                                            |
|-------------------------------------------------|-----------------------------------------|-------------------------------------------------|------------------------------------------------|----------------------------------------|-------------------------|----------------------------------------------|
| Layer                                           | material                                | thickness                                       | Layer                                          | material                               | thickness               | Therma                                       |
| Top plate<br>air gap<br>bottom plate<br>cooling | aluminum<br>air<br>aluminum<br>aluminum | 1mm<br>5mm<br>1mm<br>5mm diam. tube<br>1mm wall | Thermal pad<br>High Speed Board<br>Power board | graphite<br>polystyrene<br>polystyrene | 0.25mm<br>1mm<br>3.1 mm | AIN<br>Laird Fi<br>ROC<br>Solder (<br>Sensor |

| Layer        | material | thickness |
|--------------|----------|-----------|
| Thermal pad  | graphite | 0.25mm    |
| AIN          | AIN      | 0.79mm    |
| Laird Film   | graphite | 0.08mm    |
| ROC          | plastic  | 0.25mm    |
| Solder (Tin) | tin      | 0.03mm    |
| Sensor       | silicium | 0.3mm     |
| Ероху        | ероху    | 0.08mm    |
| AIN          | AIN      | 0.51mm    |
|              |          |           |

#### More infos in CMS ETL TDR [[Link]]



# **TTL Layers in Geant4**







- Material budget  $\sim 8\% X/X_0$  dominated by Al plates  $\rightarrow$  cooling pipes with substantial material
- ATHENA barrel TOF  $\sim 1\% X/X_0$  $\rightarrow$  carbon foam/comb stave design





# **TTL Layers in Geant**

- Barrel made of 12 modules in azimuth and multiple modules along *z*-axis
- Forward layers mounted on both sides of large disk







#### **Analyzing TTL simulation output**



- MECCEGEOM HITS NONPROJT BRRLMAT2 SimpleMultiPion.rost P # levent tree an et the bits laveri hits trueID hine a hints a hits a the latter of S have a hits edec hits Johtsleid hits isAbsorbe n Tracks tracks ID tracks chair tracks px tracks row tracks pz teaches a tracks y tracks z tracks\_ndf harks chill tracks\_dca tracks dos 2 teacher taxall tracks source track pion LL track knon 11 track proton LL Delections track ProiTrackID track Deal ave track TLP a track TLP y track TLP z track TLP 1 track TLP px track TLP py track TLP pz track TLP true y track TLP true a track TLP true tower BECAL N tower BECAL E tower BECAL IEte tower RECAL IPhi 7/11 June 13, 2022



N. Schmidt (ORNL)

p (GeV)



#### Analyzing TTL simulation output - 2



- TOF afterburner code in tofpid.cxx  $\rightarrow$  calculates  $t_0$ ,  $\beta$ , ...
- Current TOF code from Friederike Bock
- Performance (next slide) meets expectation
  - $\rightarrow$  determine possible improvements and more realistic simulations

| <pre>// fixed mass assumption:<br/>float mblectrom = ThotabaseR00;:Instance()-&gt;detParticle(11)-&gt;Mass();<br/>float mblem = ThotabaseR00::Instance()-&gt;detParticle(212)-&gt;Mass();<br/>float mbream = ThotabaseR00::Instance()-&gt;detParticle(212)-&gt;Mass();<br/>float mbream = ThotabaseR00::Instance()&gt;&gt;detParticle(212)-&gt;Mass();<br/>float mbream = ThotabaseR00::Instance()&gt;&gt;detParticle(212)-&gt;Mass();</pre> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <pre>/nt doctifiert = 0;</pre>                                                                                                                                                                                                                                                                                                                                                                                                               |
| <pre>// abort if not a probable scattered electron if (!_track_ToFnees[itrk].at(0).isProbEScat) continue;</pre>                                                                                                                                                                                                                                                                                                                              |
| <pre>Prected appartme(: appart pr(int) track_tracB(ittk]), nepart pr(int)_track_tracBD(ittk]), nepart pr(int)_track_tracBD(ittk]); // prestab tets for fictions ficial betagen = rundvjqr(truePtrueP + mElectron*Electron); // calculate average start time for single electron track ficat U=0; tl = int (rund*Und*Und*Und*Und*Und*Und*Und*Und*Und*U</pre>                                                                                  |
| if (nSatElect == 0) mT0[0) = <u>tstart;</u><br>else mT0[0] += tstart;<br>nScatElect++;                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                              |



#### **Analyzing TTL simulation output - 3**

Plotting of PID studies via pidreso\_Pythia.C



FIC



#### **Critical next steps**



- Compare implementations and physics performance between DD4hep and Fun4All
  - $\rightarrow$  ATHENA barrel design to be implemented in Fun4All as cross check
- Determine further optimizations of TTL design (barrel and forward!)
  - $\rightarrow$  study impact of pixel or strip sensors
  - $\rightarrow$  determine necessary overlap of sensors for maximal acceptance
  - $\rightarrow$  integration of modules/staves into DIRC frame
  - $\rightarrow$  maximize distance to vertex for all TTL layers
- Check impact on physics
  - ightarrow make TOF information easily available for analyzers (EventEvaluator or Afterburner code?)
- Determine material optimizations and global integration with engineers
  - ightarrow focus on minimizing support and cooling (depending on performance impact of other systems)
  - $\rightarrow$  detailed CAD model needed soon (support, electronics, services)

Backup



#### **ATHENA barrel TTL**









N. Schmidt (ORNL)

June 13, 2022 11 / 11



#### TTL disk design









### **DIRC frame in barrel**



- ${\mbox{\circle*{1.5}}}$  Currently only stepping files of this frame exist (sent around by Tanja)  ${\mbox{\rightarrow}}$  porting to Fun4All needed
- Frame allows to mount modules on various radial positions
- Considered material is steel at the moment  $\rightarrow$  significant material budget in certain regions



#### New Layers in Geant4 - 3



