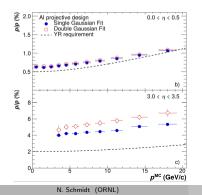
BST - The Barrel Silicon Tracker performance of a more realistic inner tracker

Det1 Tracking Meeting June 23, 2022

Nicolas Schmidt

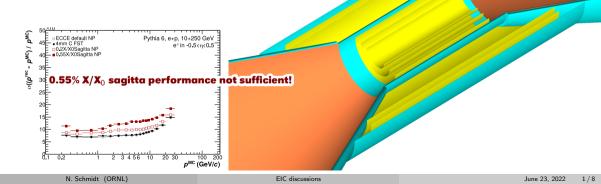
F. Bock, M. Demarteau, M. Fasel, E. Glimos, O. Hartbrich, F. Jonas, C. Loizides, J. Osborn, M. Poghosyan, K. Read, A. Russu, J. Schambach



ECCE proposal inner tracker

ECCE inner tracker setup (SVTX+BARR):

- 3 vertex layers, 2 sagitta layers
- ${\ensuremath{\, \circ }}$ all layers with 0.05% X/X_0
- radii of layers either based on Al-optimized design or non-projective design
- no internal support structures, only generic service cone

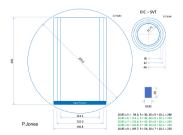


ECCE proposal inner tracker

ECCE inner tracker setup (SVTX+BARR):

- 3 vertex layers, 2 sagitta layers
- ${\ensuremath{\, \circ }}$ all layers with 0.05% X/X_0
- radii of layers either based on Al-optimized design or non-projective design
- no internal support structures, only generic service cone

Towards more realism - BST


Detector code: PHG4BSTDetector.cc

Layer setup (half shell):

Barrel Silicon Tracker (BST):

- 3 vertex layers with 0.05% X/X_0 (\sim 50 microns)
- 2 sagitta layers with optional kapton foil
- radii of layers based on available sensor sizes
- internal supports via carbon foam structures
- external support via carbon foam/sheet cylinder

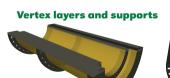
Vertex layer	radius [mm]	sensors (half shell)
0	36.16	113.1×250mm
1	48.22	2 * 75.5×280mm
2	60.19	2 * 94.3×280mm
Sagitta layer	radius	sensors (half shell)
0	198.3	5 * 94.3×280mm + 2 * 75.5×280mm
1	210.3	7 * 94.3×280mm

- 8 mm for periphery at end of sensors
- dead area of 1mm between adjacent sensors

Towards more realism - Internal Supports

Carbon foam supports:

- Design based on current ALICE ITS3 developments
- Endwheels (1cm ALLCOMP) for each layer
- Longerons (3mm Duocel) along edges of each sensor
- Additional mid-wheels (7mm ALLCOMP)
 - \rightarrow one mid-wheel for each vertex layer
 - \rightarrow two mid-wheels in each sagitta layer
- Support wheels (1cm ALLCOMP) in center of sagitta layers where sensors touch
 - \rightarrow place where both halves of detector are connected
- Holes in wheels for airflow

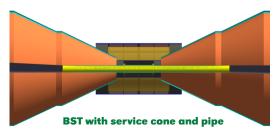


Carbon foam Duocel Foam ERG (longerons): ρ =70 kg/m³ k=0.05 W/(m*K) ALLCOMP LD Foam (rings): ρ =200 kg/m³ k=20 W/(m*K)

[ITS support slides]

N. Schmidt (ORNL)

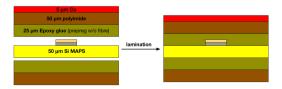
Towards more realism - External Supports



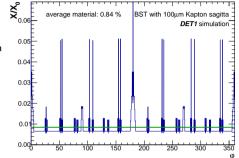
Support cylinders:

- Quinders made of 2(or 3)mm ALLCOMP foam sandwiched between 200µm carbon sheets → improvements to material thickness to be determined by engineers
- Radial positions:
 - $\rightarrow R = 7.5$ cm for vertex support (39cm long)
 - \rightarrow R = 22.5cm for sagitta support (76cm long)
- Integration into support cone not final yet \rightarrow cables and cooling routing yet to be implemented

Full BST with all supports


Towards more realism - MAPS Kapton foil

EIC


Kapton foil support:

- 12–50 μ m Kapton foil laminated to both sides of sensor
- Massive improvement of mechanical properties of thin silicon
- Process could also stitch MAPS sensors together (reduction of gaps between sensors)
 - \rightarrow would require additional thin layer of Cu
- Total radiation length per layer (with 90µm Kapton + expoxy)

ightarrow about 0.11%

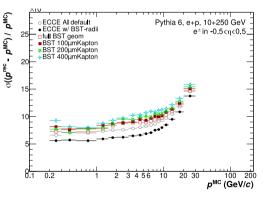
[ITS MAPS foil slides]

Material budget:

- Material scan of BST in Geant4
- Average material of 0.84% including all supports/layers
- Large peaks are copper wires for additional power at inner edge of sagitta layers (could be reduced)
- Carbon foam supports only add small amount of material budget

N. Schmidt (ORNL)

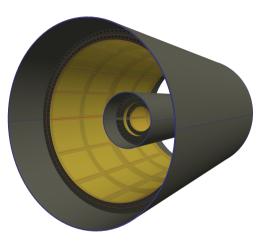
EIC discussions



Towards more realism - BST Performance

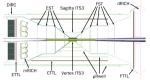
Momentum resolution:

- ECCE default AI tracking (light gray) compared to basic simulation with BST radii
 - \rightarrow better performance due to larger radii in sagitta layers in BST setup
- Full BST geometry (includes all support materials) 0.5–1.5% worse performance than ECCE default
- Additional Kapton in sagitta layers (100µm most realistic) causes slight deterioration of performance


Possible improvement of BST performance with further optimized sagitta radii

Next steps

- More realistic inner tracker design implemented in Fun4All
 - \rightarrow based on available sensor sizes
 - \rightarrow includes internal supports
 - \rightarrow contains additional support in sagitta layers
- ${\circ}\,$ Performance slightly worse than full 0.05% X/X_0 ECCE proposal
 - \rightarrow radii of BST could be further improved
- Further improvements being worked on \rightarrow implementation of periphery (cables and their supports)
 - \rightarrow attaching of BST to service cone



Backup

Radii in ECCE proposal

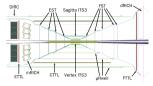
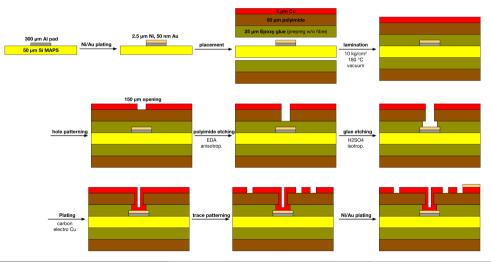


Figure 2: GEANT4 visualization of the ECCE non-projective tracking detector design and its support structures.

Region/				
technology	index	r (cm)	zmin (cm)	z _{max} (cm)
barrel				
MAPS	1	3.3	-13.5	13.5
MAPS	2	4.35	-13.5	13.5
MAPS	3	5.4	-13.5	13.5
MAPS	4	21.0	-27	27
MAPS	5	22.68	-30	30
$\mu RWELL$	6	33.14	-40	40
µRWELL	7	51	-106	106
AC-LGAD	8	64	-140	140
μ RWELL	9	77.0	-197	145
		z (cm)	rin (cm)	r _{out} (cm)
e-endcap				
MAPS	1	-25	3.5	18.5
MAPS	2	-52	3.5	36.5
MAPS	3	-79	4.5	40.5
MAPS	4	-106	5.5	41.5
AC-LGAD	5	-155.5	8	64
h-endcap				
MAPS	1	25	3.5	18.5
MAPS	2	49	3.5	36.5
MAPS	3	73	4.5	40.5
MAPS	4	106	5.5	41.5
MAPS	5	125	7.5	43.5
AC-LGAD	6	182	7	87

Figure 3: GEANT4 visualization of the AI-based and optimized ECCE projective tracker design including its support structures.


Region/				
technology	index	r (cm)	z_{\min} (cm)	zmax (cm)
barrel				
MAPS	1	3.3	-13.5	13.5
MAPS	2	4.35	-13.5	13.5
MAPS	3	5.4	-13.5	13.5
MAPS	4	21.0	-27	27
MAPS	5	22.68	-30	30
$\mu RWELL$	6	33.14	-70	70
µRWELL	7	51	-115	115
AC-LGAD	8	64	-140	140
μ RWELL	9	77.0	-145	145
		z (cm)	rin (cm)	rout (cm)
e-endcap				
MAPS	1	-33.2	3.3	15.3
MAPS	2	-58.3	3.3	27.3
MAPS	3	-80.05	4.8	34.8
MAPS	4	-107.4	6.0	48.0
AC-LGAD	5	-155.5	8	64
h-endcap				
MAPS	1	33.2	3.3	15.3
MAPS	2	58.3	3.3	27.3
MAPS	3	79.85	4.8	34.8
MAPS	4	115	5.8	49.8
MAPS	5	144	8.2	62.2
AC-LGAD	6	182	7	87

N. Schmidt (ORNL)

Kapton Sandwich Process

N. Schmidt (ORNL)

June 23, 2022 8 / 8