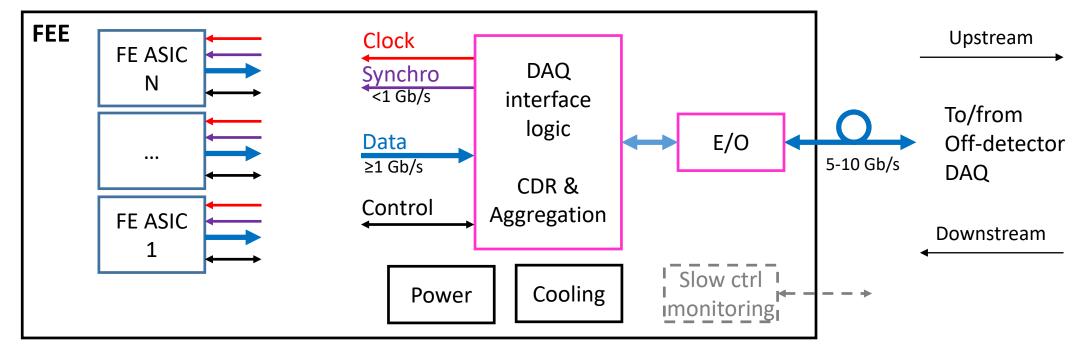


MPGD tracker frontend alternatives

Irakli Mandjavidze

Irfu, CEA Saclay Gif-sur-Yvette, 91191 France

> Internal 07/Jun/2022

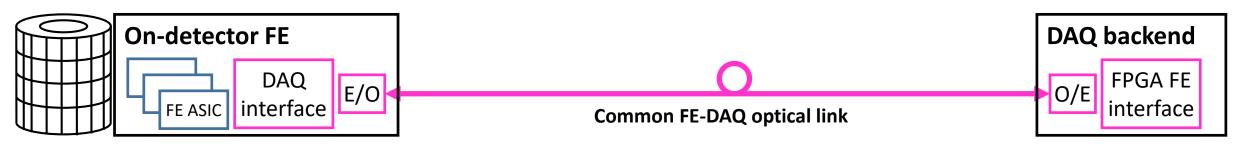


- Some alternatives for frontend organization
- Twinax copper cables
- On-detector VFE and off-detector DAQ interface connectivity
- Summary

Frontend electronics

- Detector-family specific frontend chips
- Common FE-DAQ interface
 - \rightarrow A bi-directional optical link for clock, synchronization (run control), data, configuration
 - Also for slow-control and monitoring, at least partially

- Connectivity between the ASICs and DAQ interface?
 - \rightarrow Few organizational alternatives listed


Frontend organization

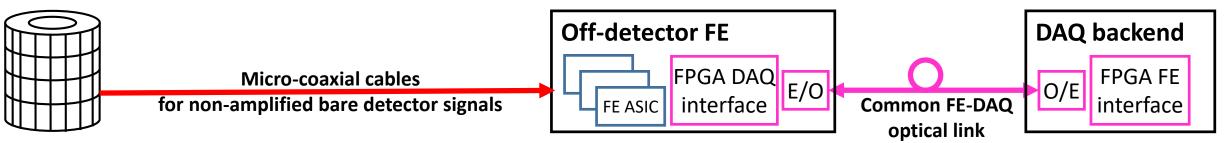
Crowded detector vicinity

Experimental area with lesser constraints

Counting room

• LHC Phase-2 style with low-power DAQ interface (GBT/VTRX \rightarrow lpGBT / VTRX+ and GBT-SCA)

- \rightarrow Pros:
 - Optimal for S/N
 - High integration potential
 - Number of channels per DAQ link
 - Single type of frontend to be developed and maintained
- \rightarrow Cons:
 - Might be penalizing if implemented with COTS components (FPGA / transceiver)
 - Power (see backup), space, cooling, SEU
- \rightarrow To be understood:
 - Is the commercial component based model acceptable follow closely eRD104
 - For more details see: https://indico.jlab.org/event/519/contributions/9563/attachments/7748/10855/220518_SroX_FrontEnd_IM.pdf


Frontend organization

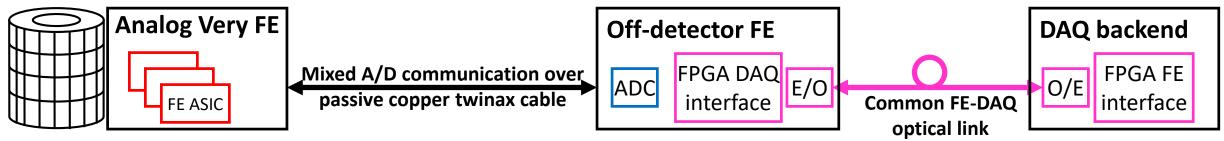
Crowded detector vicinity

Experimental area with lesser constraints

Counting room

Clas12 MVT-style with passive micro-coaxial detector cables

- \rightarrow Pros:
 - Optimal for power/cooling, SEU
 - Single type of frontend to be developed and maintained
- \rightarrow Cons:
 - Noise due to cable capacitance (50-60 pF/m) + pickup noise
 - Clas12: 40 pF/m Hitachi lightweight cables not anymore in production
 - High number of cables
 - Non negligible cable cost
- \rightarrow To be understood:
 - Viability of the solution given the distance between the detector and FE electronics
 - For an example see: https://www.sciencedirect.com/science/article/pii/S0168900220300280


Frontend organization: analog very frontend

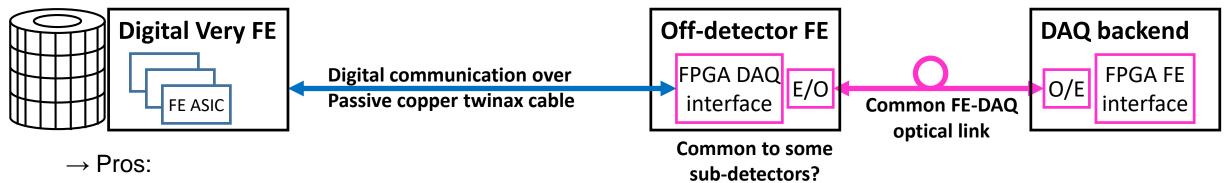
Crowded detector vicinity

Lesser constraints experimental area

Counting room

• Minimal on-detector analog very frontend electronics with remote off-detector DAQ interface

- \rightarrow Pros:
 - Optimal power/cooling and SEU
 - Near optimal for S/N
 - Simplest ASIC
 - Simplest in downstream communication (*i.e.* I2C, test pulse)
- \rightarrow Cons:
 - Two species of frontends to be developed and maintained
 - Large number of bulky copper cables
- \rightarrow To be understood:
 - Acceptable copper cable length for O(300 MHz) bandwidth analog signals

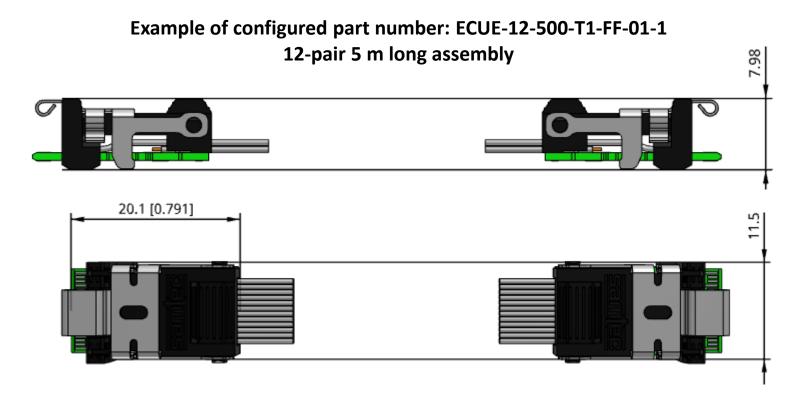

Frontend organization: digital very frontend

Crowded detector vicinity

Lesser constraints experimental area

Counting room

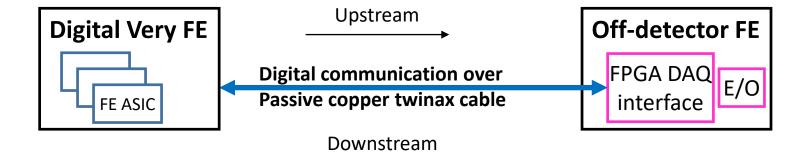
• Minimal on-detector digital very frontend electronics with remote off-detector DAQ interface



- Optimal for S/N and SEU
- Near optimal for power/cooling
- \rightarrow Cons:
 - Two species of frontends to be developed and maintained
 - Copper cables are more bulky than optical cables
- \rightarrow To be understood:
 - Acceptable copper cable length for O(1 Gbit/s) communication speeds
 - Number of needed twinax lanes for downstream and upstream communications

Twinax copper cable example: Samtec FireFly

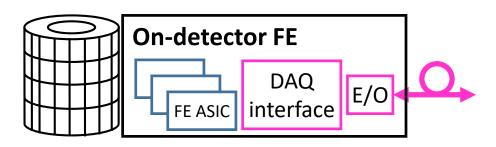
- <u>https://www.samtec.com/products/ecue</u>
- https://suddendocs.samtec.com/catalog_english/ecue.pdf
- Configurable assembly
 - \rightarrow 8 or 12 pairs
 - \rightarrow up to 10 m
- Impressive signal integrity figures
 - \rightarrow Qualified for 10-50 Gbit/s speeds

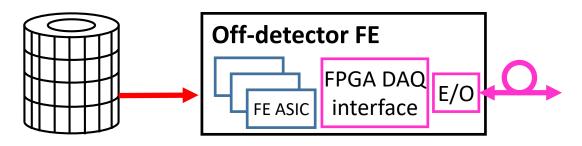

- Max length for O(1 Gbit/s) speed?
 - \rightarrow Example in backup
- Rigidity, weight?
- Flammability?
- Cost?
 - \rightarrow Contact Samtec technical service
 - \rightarrow R&D on data transmission and on clock / synchronous command distribution?

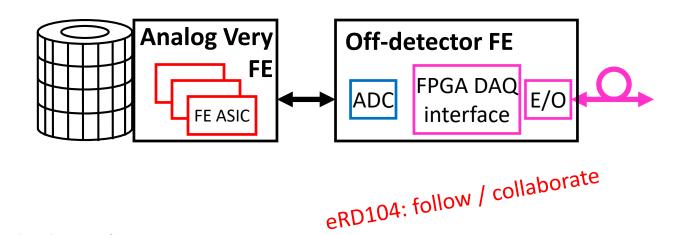
Very frontend and DAQ interface connectivity

Downstream

- \rightarrow Clock
 - Unique if on-chip clock generation
 - PLL or divider
 - Fan-out to all ASICs
 - See backup
 - Hopefully used for I2C too
- \rightarrow Synchronous commands
 - Fan-out to all ASICs
 - See backup
- \rightarrow Slow control
 - I2C SDA chain
 - + I2C SCL if a common clock cannot be used
- \rightarrow Trigger if not a part of synchronous commands
 - Multi-drop to all ASICs
- \rightarrow Test pulse
 - Multi-drop to all ASICs
- Upstream
 - \rightarrow Acquisition data
 - Point-to-point
 - N ASICs x M output links per ASIC
 - \rightarrow Slow control
 - If I2C SDA line cannot be bi-directional

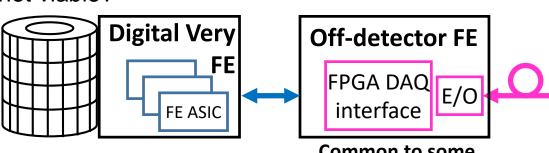

- Optimistic 512-channel FE example
 - \rightarrow 8 64-channel FE ASIC with
 - 1 Gbit/s output link
 - Unique system clock used for I2C as well
 - Synchronous command encoding trigger
 - \rightarrow Common on-onboard test pulse logic
 - \rightarrow Bi-directional I2C SDA
 - \rightarrow Single 12-pair FireFly interface
 - 3 downstream lines:
 - Clock, command, Test
 - 8 upstream lines
 - 8 data links
 - 1 bi-directional I2C SDA line




Summary

• Fully integrated on-detector frontend can be penalizing

- \rightarrow Power / cooling
- \rightarrow Material budget
- \rightarrow Space
- $\rightarrow \text{SEU}$
- Fully integrated off-detector frontend
 - \rightarrow Will most probably penalize S/N
 - Bare non-amplified detector signals
 - High input capacitance due to long (>3m?) cables
 - Noise pickup
 - \rightarrow May result in low integration level
 - Large number of detector cables to route-out
- Split analog frontend may penalize
 - \rightarrow S/N
 - Analog transmission over long cables
 - \rightarrow Integration
 - Large number of detector cables to route-out



Summary

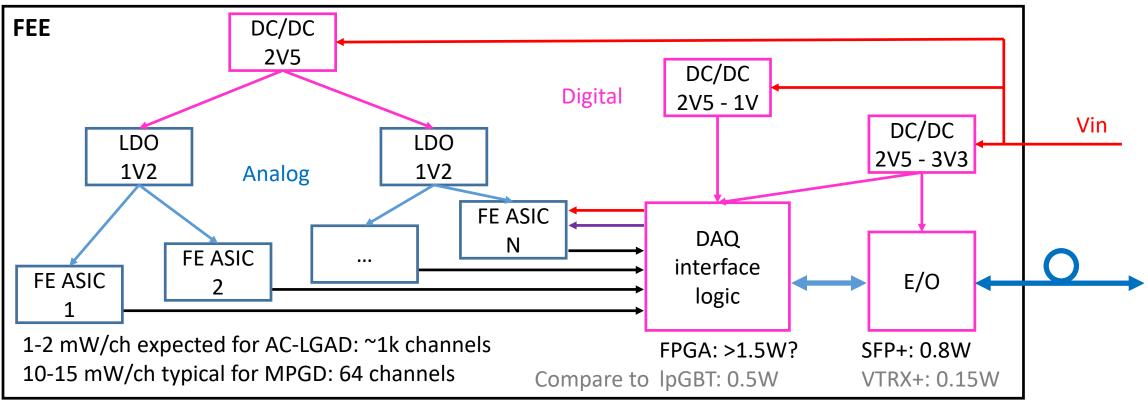
Split digital frontend

- \rightarrow Optimal alternative if fully integrated on-detector FE is not viable?
 - S/N
 - Power / cooling; SEU; material budget
- \rightarrow Intermediate level of connectivity integration
 - Cable count
 - Lower than split-analog or integrated off-detector frontend
 - Higher than integrated on-detector frontend
 - FE ASICs with a smaller digital interface are preferable
 - Single clock for acquisition, communication and I2C
 - Single high speed upstream link
 - Trigger being one of the synchronous commands
- \rightarrow May require companion commercial or ad-hoc ASICs for digital very frontend
 - Clock / sync command distribution ASIC
 - See backup
 - Bi-directional I2C buffer
- \rightarrow The off-detector frontend might be a common development among some of sub-detectors

→ A quick R&D to evaluate copper twinax cable performance for considered communication speeds?
■ Achievable length for acceptable signal integrity; rigidity; weight; encumbrance; flammability
Split FE alternative 7/Jun/2022

Common to some sub-detectors?

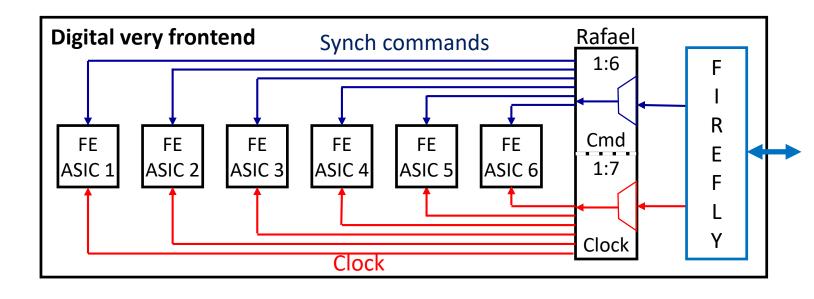
eR010A. Follow I collaborate



Backup

Power: is an FPGA-based integrated on-detector FE viable

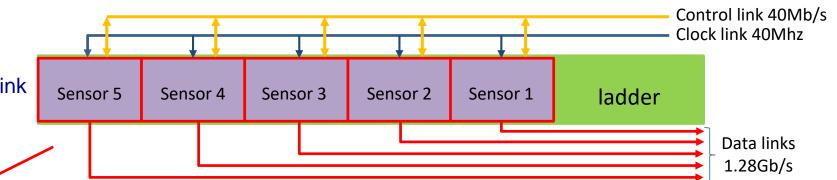
- 1.5 T magnetic field requires efficient power regulation
 - \rightarrow High efficiency DC/DC converter for digital power
 - \rightarrow LDO regulators for analog circuitry



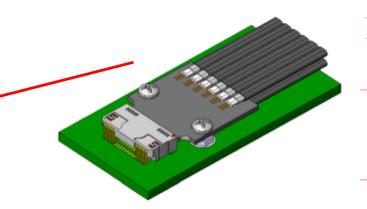
- \rightarrow Frontend board with MPGD ASICs: 4-8 W + DAQ logic and E/O power
 - 4 8 ASICs per frontend; ~1 W per ASIC
- \rightarrow Frontend board with AC-LGAD ASICs: ~3 W + DAQ logic and E/O power
 - 2 ASICs per frontend; ~1.5 W per ASIC

Clock and fast command distribution example

- Rafael Radiation-hArd Fan-out Asic for Experiments at LHC developed at Irfu, CEA Saclay
 - \rightarrow 3 inputs and 13 outputs
 - \rightarrow CLPS signaling
 - CM voltage: 0.6 V
 - Differential swing: 200-400 mV
 - Programmable drive and emphasis
 - \rightarrow Single buffer: any input to 13 outputs
 - \rightarrow Double buffer
 - Input 1 to 6 outputs
 - Input 2 to 7 outputs
 - \rightarrow Up to 400 MHz and beyond
 - \rightarrow Low additive jitter of < 2 ps
 - \rightarrow LHC-level TID, neutron, SEU
 - \rightarrow 130 nm technology
 - \rightarrow Possibility to embed a PLL
 - If no jitter cleaner PLL in ASICs
- Commercial counterparts
 - → IDT 8P34S2108: https://www.renesas.com/eu/en/document/dst/8p34s2108-datasheet
 - \rightarrow TI CDCLVD1216: http://www.ti.com/lit/ds/symlink/cdclvd1216.pdf



Twinax copper cable performance example: Alice MFT


Muon Forward Tracker: ladders with a variable number of ALPIDE silicon sensors

- Pixel = 29 x 27 µm²
- ZS, triggered or continuous
- 1.28 Gbit/s upstream data link
 - Pre-emphasis capability
- 40 MHz clock
- 40 Mb/s control

Samtec 12-ribbon FireFly twinax cables with low profile connectors

- \rightarrow Signal integrity studies
 - Up to 8m of cable and 9 connectors in the path
 - Reliable communication with BER better than 10⁻¹⁴
 - Adjust pre-emphasis

Split FE alternative 7/Jun/2022