

A new era for small-x physics

Highlights and ongoing efforts

California EIC Consortium Collaboration Meeting

UC Davis July 19th, 2022

Farid Salazar

in collaboration with many people!

Outline

Uplifting saturation physics to NLO

• A unified framework for dilute and dense dynamics

Further ongoing projects

Nuclear matter in the high-energy limit

Emergence of an energy and nuclear species dependent momentum scale

$$Q_s^2 \propto \left(\frac{A}{x}\right)^{1/3}$$

Multiple scattering (higher twist effects)

Non-linear evolution equations (BK/JIMWLK)

Nuclear "Oomph factor" $A^{1/3}$

One of the major objectives of the EIC is the search for a new type of state composed of dense gluon matter

See Barbara and Barak talks

For a recent review see

Mining for gluon saturation at colliders

Astrid Morreale, FS (2021)

Recent developments

DIS structure functions

Beuf, Lappi, Hänninen, Mäntysaari (2020)

Hadron production in pp (pA)

Shi, Wang, Wei, Xiao (2021)

Many recent developments pushing saturations physics to NLO

Diffractive structure functions

Massive structure functions

Exclusive vector meson production in DIS

Jyväskylä group (Lappi et al, 2020-2022)

Dijet production in DIS Caucal, FS, Venugopalan (2021)

Jet production in pA Liu, Xie, Kang, Liu (2022)

Dijet production in photo-production *Taels et al (2022)*

Dihadron production in DIS Bergabo, Jalilian-Marian(2022)

Why dijet production?

Complementary process to fully inclusive

$$\begin{split} Q_Y(\boldsymbol{x}_{\perp}, \boldsymbol{y}_{\perp}; \boldsymbol{y}_{\perp}', \boldsymbol{x}_{\perp}') \\ &= \frac{1}{N_c} \langle \text{Tr} \left[V(\boldsymbol{x}_{\perp}) V^{\dagger}(\boldsymbol{y}_{\perp}) V(\boldsymbol{y}_{\perp}') V^{\dagger}(\boldsymbol{x}_{\perp}') \right] \rangle_Y \end{split}$$

Simplest observable featuring the quadrupole.

JIMWLK factorization beyond the dipole

In the back-to-back limit contact with the (transverse momentum dependent) TMD formalism

Dominguez, Marquet, Xiao, Yuan (2011)

Dumitru, Skokov, Ullrich (2019)

Suppression of back-to-back peak potential signature of gluon saturation (dihadrons)

Zheng, Aschenauer, Lee, Xiao (2014)

Jets are better proxies of hard partons (than hadrons)

Dijet production: from CGC to TMD

In the CGC the differential cross-section is a convolution of a perturbative factor and correlators of products of Wilson lines

Wilson line resums multiple scatterings

$$V_{ij}(\boldsymbol{x}) = P \exp \left\{ ig \int dx^{-} A_{cl}^{+,a}(\boldsymbol{x}, x^{-}) t^{a} \right\}$$

In the back-to-back dijet configuration, the result can be cast as a product of a hard factor and the WW gluon TMD

Dominguez, Marquet, Xiao, Yuan (2011)

See also Boussarie, Mäntysaari, FS, Schenke (2021)

Does this CGC-TMD correspondence hold at NLO?

Dijet production in the CGC at NLO

Computed one-loop corrections

Highlights of our results

- Cancellation of UV, soft and collinear divergences
- Large energy (rapidity) logs factorize, and can be resumed via JIMWLK evolution
- Impact factor (free of large energy logs) is finite and can be numerically computed

In collaboration with Paul Caucal, and Raju Venugopalan. 2108.06347 [JHEP 11 (2021) 222]

From CGC at NLO to TMDs

Sudakov logs in collinear/TMD obtained by Mueller, Xiao, Yuan (2013)

+ NLO pieces that break TMD factorization

Single log

Double log

From CGC at NLO to TMDs (next steps)

Numerical predictions for dijets at NLO

Implementing kinematically constrained small-x evolution

<u>Double</u> and <u>single</u> Sudakov log resummation

Impact on azimuthal asymmetries (extraction of linearly pol gluons)

Estimate the size of <u>factorization breaking terms</u> (enhanced in nuclei)

work in progress with Caucal, Schenke, Venugopalan

Distinguish soft/rapidity divergences using SCET

A systematic treatment of soft and collinear regions, and rapidity divergences following Liu, Xie, Kang, Liu (2022)

Establish factorization at small-x ala SCET

work in progress with Zhongbo Kang and Xiaohui Liu

Anatomy of hadronic matter

Can we establish a framework that simultaneously describes both regions?

Beyond leading twist in collinear factorization

A simple example: direct photon production in pA

Higher twist become important at moderate $p_{\gamma\perp}^2$!

What is the intrinsic momentum $\langle k_{\perp}^2 \rangle$ of the nucleus ?

$$\Lambda_{\rm QCD}^2$$
?

$$Q_s^2$$
?

Saturation scale? grows with energy and nuclear number?

Matching between high-twist and CGC formalism: open up shock-wave

Matching between high-twist and CGC formalism in the collinear limit

• Twist-2

$$p_{\gamma}^{-} \frac{\mathrm{d}\sigma^{p+A \to \gamma + X}}{\mathrm{d}p_{\gamma}^{-} \mathrm{d}^{2} \boldsymbol{p}_{\gamma \perp}} = \int \mathrm{d}x_{p} f(x_{p}) \frac{\alpha_{\mathrm{em}} \alpha_{s}}{N_{c}} \frac{\xi^{2} \left[1 + (1 - \xi)^{2}\right]}{\boldsymbol{p}_{\gamma \perp}^{4}} T_{\mathrm{LT}}(x)$$

$$T_{\rm LT}(x) = \frac{1}{P_A^+} \int \frac{\mathrm{d}w^-}{2\pi} e^{ixP_A^+w^-} \left\langle P_A | F_a^{\alpha+}(w^-, \mathbf{0}_\perp) F_a^{\beta+}(0^-, \mathbf{0}_\perp) | P_A \right\rangle \delta_{\perp \alpha \beta}$$

• Twist-4 contributions

$$p_{\gamma}^{-} \frac{d\sigma^{p+A\to\gamma+X}}{dp_{\gamma}^{-}d^{2}\boldsymbol{p}_{\gamma\perp}} \Big|_{C,I} = \frac{(2\pi)^{3}\alpha_{em}\alpha_{s}^{2}}{N_{c}^{2}} \int dx_{p} f(x_{p}) \frac{\left[1 + (1 - \xi)^{2}\right]}{\boldsymbol{p}_{\gamma\perp}^{6}}$$

$$\times \left[4\xi^{4}T_{C,I}(x,0) + \xi^{3}(1 - \xi) \frac{\partial(T_{C,I}(x,x_{2}))}{\partial x_{2}} \Big|_{x_{2}=0} - 3\xi^{4}x \frac{\partial(T_{C,I}(x_{1},0))}{\partial x_{1}} \Big|_{x_{1}=x} + \xi^{4}x^{2} \frac{\partial^{2}(T_{C,I}(x_{1},0))}{\partial x_{1}^{2}} \Big|_{x_{1}=x} \right]$$

$$T_{\text{C,I}}(x_1, x_2) = \frac{1}{P_A^+} \int \frac{\mathrm{d}w^-}{2\pi} \int \frac{\mathrm{d}z^-}{2\pi} \int \frac{\mathrm{d}z'^-}{2\pi} e^{ix_1 P_A^+ w^-} e^{ix_2 P_A^+ (z^- - z'^-)} \Theta(w^- - z^-) \Theta(-z'^-)$$

$$\langle P_A | F_a^{\alpha +}(w^-, \mathbf{0}_\perp) F_b^{\rho +}(z^-, \mathbf{0}_\perp) F_b^{\delta +}(z'^-, \mathbf{0}_\perp) F_a^{\beta +}(0^-, \mathbf{0}_\perp) | P_A \rangle \, \delta_{\alpha\beta} \delta_{\rho\delta}$$

+ contributions from final state, interference, and asymmetric cut

Quarkonium production at small-x

- Studies of quarkonium production in DIS at small-x have focused mostly on diffraction, and employ NP model for LCWF of quarkonium
- Employ CGC + NRQCD or CGC+ICEM to study nuclear modification factor in DIS

Good description of experimental data at low p_{\perp} at RHIC and LHC

Ma, Venugopalan (2014) based on Kang, Ma, Venugopalan (2014)

Quarkonium production in DIS and small-x

in progress with Vincent Cheung, Zhongbo Kang, and Ramona Vogt

Energy-energy correlators at small-x

- Jets ideal to access parton dynamics at low-x
- Due to limited center of mass energy at EIC, difficult to measure jets in low-x kinematics (see Barbara's talk)
- Hadrons measurements introduce some uncertainty due to fragmentation functions

$$EEC_{EIC}(\tau) = \sum_{a} \int d\theta_{a} z_{a} dz_{a} \frac{1}{\sigma} \frac{d\sigma^{\gamma^{*} + A \to a + X}}{d\theta_{ap} dz_{a}} \delta\left(\tau - \left(\frac{1 + \cos\theta_{ap}}{2}\right)\right)$$

- Due to sum rule reduce uncertainties due to fragmentation
- Study nuclear modification factor of EEC near $\tau \sim 0$

Figure from Fanyi Zhao

in progress with Haotian Cao, Zhongbo Kang, Xiaohui Liu, and Fanyi Zhao

Ongoing projects with <u>undergrads</u> at UCLA

Global analysis of DIS and pp/pA data
 with <u>Amanda Wei</u>* and ZK (<u>Miranda Li</u> recently joined)

 Isolated photon+hadron(jet) production with <u>Sky Shi</u>* and ZK

Leveraging the LHAPDF framework for efficient small-x computations

with Jeisson Pulido ** (Cal Bridge), ZK, and John Terry

• Diffractive J/ψ + photon production in DIS

with Philip Velie** (U. Virginia) and ZK

^{*}graduated recently

^{**}visiting students

Summary

Uplifting saturation physics to NLO

Dijet production in DIS interplay between small-x resummation and TMD evolution

A unified framework for dilute and dense dynamics

Possibility to generalize the CGC formalism to admit a simultaneous description of small-x and moderate-x

Further ongoing projects

Promising observables at the EIC: energy-energy correlators, and quarkonium production in DIS at small-x

Undergrads are actively engaged, hope they will join this meeting in the future!