

LANL Overview

Kei Nagai on behalf of LANL EIC team

July 18th, 2022

- LANL members

 - Postdoc: Kei Nagai
- Working on
 - Silicon tracker
 - Beam-gas background

Staff members: Xuan Li, Matthew Durham, Cesar Luis Da Silva, Ming Liu, Yasser Corrales Morales,

identified by detectors using their unique lifetime and masses.

- Performance requirements:

 - Fine spatial resolution for displaced vertex reconstruction (< 100 μm)</p> Fast timing resolution to suppress backgrounds from neighboring collisions Low material budgets to maintain fine hit resolution

• Los Alamos Detector Requirements for HF physics

• Heavy flavor hadrons usually have a short lifetime compared to light flavor hadrons. They can be

\vec{p} K^+		Mass (GeV/c^2)	Average D Length (µ
	D^{\pm}	1.869	312
lecay length \vec{L}	D^0	1.864	123
	B^{\pm}	5.279	491
	B^0	5.280	456
x			

• The Monolithic Active Pixel Sensor based Forward Silicon Tracker (FST) design consists of 5 disks with the pseudorapidity coverage from 1.2 to 3.5, ~10 B pixels and ~2.2 m^2 active area.

• Los Alamos Forward Silicon Tracker design implemented in the ECCE detector

design (ECCE) provide precise momentum and transverse DCA_{2D} resolutions.

Integrated MAPS, MPGD (e.g., μRwell) and AC-LGAD tracking detectors of the EIC reference

tion
ıce
≤ η < 3.5
C YR 2.5 ≤ η < 3.5
1 = 1 = 1 = 4 = 1
$T_{14} = \frac{1}{16} + \frac{1}{18} + \frac{1}{20}$ Track p (GeV/c) n 2.5 ≤ η < 3.5
ECCE MC: Single π ⁻ ₽- 2.5 ≤ η < 3 ╋- 3 ≤ η < 3.5
Track p _T (GeV/c) 6

• Clear D^0 signals have been found in 10+100 GeV e+p simulation

• It will provide us the precise measurement of nuclear modification in different pseudorapidity regions

Los Alamos D^0 meson reconstruction with FST

LGAD pixel map **3X5 Matrix**

LGAD Carrier Board

AC-LGAD Carrier Board

MALTA Carrier Board

MALTA Pixel diagram

SO	S1	S 2	\$3
diode	diode	diode	diod
reset	reset	reset	rese
2 μm	2 μm	3 μm	3 μr
el. size	el. size	el. size	el. si
4 μm	4 μm	3.5 μm	3.5 μ
spacing	spacing	spacing	spaci
med.	max.	max.	mec
deep	deep	deep	dee
p-well	p-well	p-well	p-we

• Los Alamos Advanced silicon technology candidates for the EIC silicon tracker

Several advanced silicon technologies are under characterization at LANL.

AC-LGAD pixel map 4X4 Matrix

MALTA sensor diagram 512X512 Matrix

- in collaboration with BNL, JLab, UCSC, CERN, FNAL, Rice Univ., UM, UNM, ANL, KIT, LGAD Consortium, UC Consortium
- Low Gain Avalanche Detector (LGAD) and AC-Coupled LGAD (AC-LGAD)
 - ► Pixel size: 0.5 to 1.3 mm
 - Spatial resolution: ~30 μ m
 - ► Time resolution: < 30 ps
- Depleted Monolithic Active Pixel Sensor (e.g., MALTA)
 - Pixel size: 36.4 μ m
 - Spatial resolution: ~7 μ m
 - ► Time resolution: ~2 ns

LGAD (AC-LGAD) characterization with the ⁹⁰Sr source test

2-layer LGAD telescope

• Los Alamos Advanced silicon technology R&D setup

MALTA sensor characterization test bench

Mechanical design of 3-layer LGAD (AC-LGAD) telescope

3-layer AC-LGAD telescope ⁹⁰Sr test setup with 2 sensors connected to the readout

• Tracking performances such as efficiency, spatial and temporal resolutions are under study with the 3-layer telescope configuration.

Feasibility tests of a two-layer AC-LGAD telescope using a 90 Sr source.

Digitized pulse shape VS time tick (2ns) for individual pixel from the ⁹⁰Sr source tests.

Event display of reconstructed electron tracks

- Threshold and noise scan has been performed.
- source tests.

MALTA prototype sensor test setup

• Successfully suppressed the noise hits and the hit occupancy has been studied with the ⁹⁰Sr

• Irradiation tests has been done in the beginning of this month with the LANL LANSCE facility to test the radiation hardness for LGAD and AC-LGAD prototype sensors with 10^{13} - 10^{16} n_{eq} cm⁻² doses.

Analysis is in progress.

- Telescope bench tests ongoing at LANL and planed beam tests in collaboration with other institutions.
- Work towards the EIC detector 1 technical design. The EIC detector 1 proto-collaboration formed in April 2022, is working on the detector technology down selection and the detector design optimization and updates for the CD2 approval scheduled in 2023.

• Los Alamos EIC Silicon detector design and R&D path forward

LGAD and AC-LGAD test samples under irradiation tests at LANL.

LANL LANSCE

MALTA telescope beam tests at CERN SPS

- •See the detector response of the electron/proton beam-gas background
- •Input files from Zhengqiao and Jaroslav
 - ► Hadron & electron
 - ★275 GeV proton beam
 - \star 10 GeV electron beam
 - Cameron, we were able to use the available files using eicsmear.
- •Use Fun4All (ECCE) with some modification
 - ► Magnetic field: 1.5 T
 - Enabled tracking **★**Tracking on the silicon detectors only

Electron beam-gas background file format is not compatible for fun4all. Thanks to Kolja and

• Los Alamos Embedding test for beam-gas background

- Simulation level embedding works
- events

30

40 50

x (cm)

-40 -30 -20 -10 0 10 20

- Silicon sensor R&D is in progress
 - Continue characterization and R&D work
 ★ Efficiency, resolution etc..
 - \star Analysis of the irradiation test
- Silicon tracking system mechanical design
- Beam-gas background study is in progress
 Embedding/effect on e-p events