Highgranularity insert for the EIC

Ryan Milton UCR/UCLA

Insert motivation and constraints

- Want coverage near the beampipe in forward region, $3 < \eta < 4$ or $2.1^{\circ} < \theta < 5.7^{\circ}$
 - About 70 cm x 70 cm area
- Want high-granularity to yield a good angular resolution
 - Allows measurements of jets and hadronic final states in DIS scattering
- Should be integrated into forward endcap without additional support structures
- Needs to account for cone-shaped, angled beampipe

Insert design

- 60 cm x 60 cm layers with a hole for the beampipe
 - Hole radius and position change in each layer
- 30 W/Sc layers and 21 Steel/Sc layers
- Half-layer "megatile" with hexagonal scintillating cells and SiPM-on-tile technology
 - Hexagon size varies along z-direction

Geometric acceptance

- Use the proton-beam axis variables labelled with *
- Smallest full-acceptance is $\eta^* = 3.7$, with some acceptance for larger η^* up to 4.0
- Acceptance down to $\eta^* = 3.2$ at front of insert

Opening the endcap

- Insert opens with endcap via rails
- Can access individual layers for installation and maintenance

Implementation in DD4hep

- Created model of the forward endcap with HCal and ECal inserts
- Have models for both ATHENA and ECCE HCals
- Using ATHENA HCal and tungsten insert for following results
- Using simplified read-outs of 3 cm x 3 cm squares instead of hexagons
- Using DD4hep with G4.10.7.p3 and FTFP_BERT

Simulation and analysis parameters

- Single particle π^- and e^- from origin along proton-beam axis
- Digitization (200 MeV ADC max dynamic range) and reconstruction via Juggler
- Timing cut: $t_{hit} < 150 \text{ ns}$
- Energy cut: $E_{hit} > 0.1 E_{MIP} = 0.1 (0.8 \text{ MeV})$

Insert shower shapes for 50 GeV π^- at $\eta^* = 3.7$

Quantifying leakage

- Leakage energy that escapes from the detector
 - Will result in events with lower energy deposition
- To quantify leakage: Leakage = $(\# \text{ events} < \mu 3\sigma)/\# \text{ events}$
- Some transverse leakage from HCal insert to HCal

Energy depositions

- Can compare how electrons and hadrons perform
- Compare quantitatively with $\frac{e}{h} = \frac{e^-energy}{\pi^-energy}$
 - Tungsten absorbers make ratio close to 1

Summary and future plans

- HCal insert enables detection near beampipe in forward region
- Promising performance: Good e/h and manageable leakage in insert
 - Will hear more about performance in following talks
- Future plans:
 - Will implement insert and endcap model into full detector simulation
 - Publish paper on insert design and performance
 - · High-granularity leads to potential optimization with machine learning
 - In collaboration with LBNL & LLNL

Some contributing members from UCR & UCLA!

Backup: Insert clearance

- Maintain a constant clearance of 3.85 cm for insert around beampipe
- Introduce a D-shape of insert hole to maintain this when opening endcap

