Probing nucleon spin structure with inclusive DIS at the EIC

Barak Schmookler

with

Ignacio Borsa (Universidad de Buenos Aires), Paul Newman (Birmingham), Qinghua Xu (Shandong University), and Yiyu Zhou (South China Normal University)

Thanks to everyone who worked on the ATHENA proposal!

Polarized PDFs and the Spin of the Proton

$$\Delta q = q^{\uparrow} - q^{\downarrow} \qquad \quad \Delta q = \int \Delta q(x) dx$$

Quark spin only accounts for a portion of the proton's spin

Large uncertainty on polarized gluon PDF

Experimental channels for studying Polarized PDFs

Inclusive and semi-inclusive lepton-proton (light nucleus) scattering, with longitudinally polarized proton (or light nucleus)

Hard proton-proton scattering with longitudinally polarized proton beams

$$p + p \rightarrow \pi + X$$

$$g + g \rightarrow g + g$$

NC e-p cross section with Longitudinally Polarized Protons

At high Q², for electron-proton scattering:

$$\Delta \sigma = \frac{d^2 \sigma}{dx dQ^2} \left(\lambda_n = -1, \lambda_l\right) - \frac{d^2 \sigma}{dx dQ^2} \left(\lambda_n = +1, \lambda_l\right) = \frac{4\pi \alpha^2}{Q^4 x} \left[-Y_+ g_4 + Y_- 2xg_1 + y^2 g_L\right]$$

$$g_1 = -\lambda_l g_1^{\gamma} + \eta_z \left(\lambda_l g_v^e - g_A^e\right) g_1^{\gamma z} + \eta_z^2 \left[-\lambda_l \left((g_v^e)^2 + (g_A^e)^2\right) + 2g_A^e g_v^e\right] g_1^z$$

$$g_{4,5} = \eta_z \left(g_v^e - \lambda_l g_A^e\right) g_{4,5}^{\gamma z} + \eta_z^2 \left[-(g_v^e)^2 - (g_A^e)^2 + 2\lambda_l g_A^e g_v^e\right] g_{4,5}^z$$

$$\int Y_{\pm} = 1 \pm (1 - y)^2$$

$$g_L = g_4 - 2xg_5$$

NC e-p cross section with Longitudinally Polarized Protons

$$\Delta \sigma = \frac{d^2 \sigma}{dx dQ^2} \left(\lambda_n = -1, \lambda_l\right) - \frac{d^2 \sigma}{dx dQ^2} \left(\lambda_n = +1, \lambda_l\right) = \frac{4\pi \alpha^2}{Q^4 x} \left[-Y_+ g_4 + Y_- 2xg_1 + y^2 g_L\right]$$

$$g_1 = -\lambda g_1^{\gamma} + \eta_z \left(\lambda_l g_v^e - g_A^e\right) g_1^{\gamma z} + \eta_z^2 \left[-\lambda_l \left((g_v^e)^2 + (g_A^e)^2\right) + 2g_A^e g_v^e\right] g_1^z$$

For non-zero electron beam polarization, this term dominates

$$g_{4,5} = \eta_z \left(g_v^e - \lambda_l g_A^e \right) g_{4,5}^{\gamma z} + \eta_z^2 \left[- \left(g_v^e \right)^2 - \left(g_A^e \right)^2 + 2\lambda_l g_A^e g_v^e \right] g_{4,5}^z$$

$$Y_{\pm} = 1 \pm (1 - y)^2$$
$$g_L = g_4 - 2xg_5$$

Measuring the g_1 structure function

At high Q², for an electron with λ =-1:

$$\Delta \sigma \approx \frac{4\pi \alpha^2}{Q^4 x} \left(Y_- 2x g_1^\gamma \right)$$

$$A_{||} = \frac{\sigma\left(\lambda_n = -1, \lambda_l = -1\right) - \sigma\left(\lambda_n = +1, \lambda_l = -1\right)}{\sigma\left(\lambda_n = -1, \lambda_l = -1\right) + \sigma\left(\lambda_n = +1, \lambda_l = -1\right)} \approx \frac{Y_-}{Y_+} A_1$$

Depolarization factor

$$A_{\gamma*p} = A_1 = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} = \frac{g_1^{\gamma}}{F_1^{\gamma}}$$

Extraction of polarized PDFs from g₁

$$g_{1}^{\gamma}\left(x,Q^{2}\right) = \sum_{i=q,g} C_{i} \otimes \Delta f_{i}$$
$$= \frac{1}{2} \sum_{q} e_{q}^{2} \left[\Delta q\left(x,Q^{2}\right) + \Delta \bar{q}\left(x,Q^{2}\right)\right] \quad \text{at LO}$$

 $\frac{\partial \Delta f_{i=q,g}}{\partial \ln Q^2} = \sum_j P_{i,j} \otimes \Delta f_j$

DGLAP evolution

Need measurements at a wide variety of x values and scales (Q² values) to constrain the polarized quark and gluon PDFs

The Electron-Ion Collider (EIC): A next-generation QCD machine

Versatile and with high-luminosity: $\Box \sqrt{s}_{ep}$: 20 – 140 GeV \Box Ion beam: Proton to Uranium \Box High polarization: P_{e,p} ~ 70% $\Box \mathcal{L}_{max} = 10^{34} cm^{-2} s^{-1}$

8

Previous EIC impact studies

Phys.Lett.B 823 (2021) 136726

ATHENA Detector Proposal

A Totally Hermetic Electron Nucleus Apparatus proposed for IP6 at the Electron-Ion Collider

The ATHENA Collaboration December 1, 2021

ATHENA@EIC

 ATHENA was one of three detector proposals for the EIC
 The work shown here is based on ATHENA

simulation data, but the results are moreor-less equally applicable to any EIC general purpose detector

Ongoing process to combine ATHENA with ECCE proposal for the detector at the first EIC interaction point

ATHENA input simulation data

e-beam E	p-beam E	\sqrt{s} (GeV)	inte. Lumi. (fb $^{-1}$)
18	275	140	15.4
10	275	105	100.0
10	100	63	79.0
5	100	45	61.0
5	41	29	4.4

- Detailed simulation work to obtain optimized resolutions throughout phase-space – 5 bins per decade in both x and Q². Kinematic coverage considered is Q² > 1 GeV², 0.01 < y < 0.95.</p>
- Our group's studies were done for inclusive electronproton scattering only.

Statistical and systematic uncertainties

 $|A_{LL}^p|$

-2

The systematic uncertainty estimation includes 1.5% point-by-point uncorrelated systematic uncertainty, 5% normalization uncertainty, and an additional systematic (shift) uncertainty of 10⁻⁴ from relative luminosity. The conservative 5% normalization uncertainty includes contributions from electron beam polarization (2%), proton polarization (2%), uncertainty related with pion contamination (3%, assuming 90% electron purity), and 1-2% on detector effects.

Statistical and systematic uncertainties

 $|A_{LL}^{p}|$

2

EIC kinematic coverage extends down to x of 10^{-4} for Q² > 1 GeV² ...but statistical error begins to approach 100% of the asymmetry for x < 10^{-3} .

This assumes ~15 fb⁻¹ integrated luminosity and 70-80% electron and proton polarization.
Many years of running with high instantaneous luminosity can help.

Expected EIC experimental precision

Expected EIC experimental precision

Impact of the EIC on polarized PDFs: DSSV

Very significant impact on polarized gluon and quark singlet PDFs using inclusive e-p only!

Impact of the EIC on polarized PDFs: DSSV

Very significant impact on polarized gluon and quark singlet PDFs using inclusive e-p only!

Summary

- The work done during the recent EIC detector proposals allows us to better understand the EIC's potential to study the spin structure of the nucleon.
- Analyses by the DSSV and the JAM collaborations show that inclusive electron-proton scattering at the EIC will constrain the polarized gluon PDF to a remarkable degree.

BACKUP

DSSV14

21

Depolarization factor

