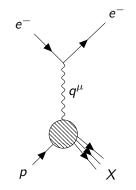
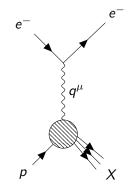
QED radiative corrections on deep inelastic scattering events at the future EIC Characterizing radiative photons with simulations

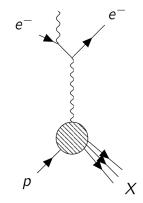

Tucker Hwang

UC Berkeley

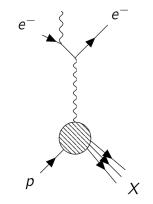
UC EIC Consortium Collaboration Meeting, July 2022



Deep inelastic scattering


• Elucidates p and n partonic structure

Deep inelastic scattering


- Elucidates p and n partonic structure
- Momentum fraction x; hadronic momentum transfer $Q^2 \equiv -q^2$
- Scattered electron method: measure final electron state

$$Q^2 = -(e - e')^2, \qquad x = rac{Q^2}{2p \cdot q}, \qquad y = rac{p \cdot q}{p \cdot e}$$

æ

ヘロト 人間 とくほ とくほとう

Altered electron momentum \implies altered x and Q^2

イロト イヨト イヨト

э

Altered electron momentum \implies altered x and Q^2

UC EIC 2022

э

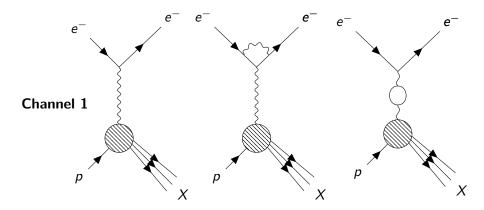
< □ > < 同 > < 回 > < 回 > < 回 >

- Does it matter?
- What can we learn about these photons?

Altered electron momentum \implies altered x and Q^2

3/21

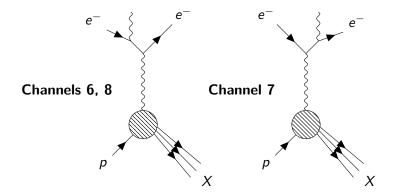
- Does it matter?
- What can we learn about these photons?
- What corrections can we apply?


Altered electron momentum \implies altered x and Q^2

< A > <

DJANGOH

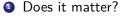
- ep collision simulation with QED radiation
 - ► HERACLES: HERA-era NC/CC *ep* interactions; handles electron vertex
 - SOPHIA/LEPTO: fragmentation post-interaction for low and high W, respectively
- Current version on BNL cluster: DJANGOH 4.6.10
- Following plots generated with DJANGOH 4.6.20
- Alternatives: PYTHIAeRHIC: PYTHIA6 with RADGEN interface


Radiative events in DJANGOH

5/21

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Radiative events in DJANGOH



< □ > < 同 > < 回 > < 回 > < 回 >

- Does it matter?
- What can we learn about these photons?
- What corrections can we apply?

Altered electron momentum \implies altered x and Q^2

< A > <

- What can we learn about these photons?
- What corrections can we apply?

Altered electron momentum \implies altered x and Q^2

7/21

10 GeV e^- on 100 GeV p; $Q^2_{elec} > 0.5$ GeV²:

3

ヘロト 人間 ト 人 ヨ ト 一

10 GeV e^- on 100 GeV p; $Q^2_{\rm elec} > 0.5~{\rm GeV^2}$:

Non-radiative events: $\approx 44\%$;

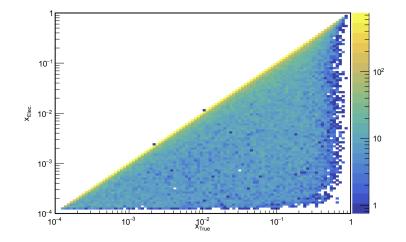
э

ヘロト 人間 ト 人 ヨ ト 一

10 GeV e^- on 100 GeV p; $Q^2_{\rm elec} > 0.5~{\rm GeV^2}$:

Non-radiative events: $\approx 44\%$; radiative events: \approx 56%

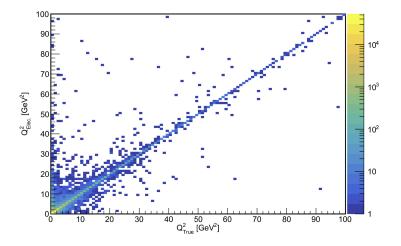
3


10 GeV e^- on 100 GeV p; $Q^2_{elec} > 0.5$ GeV²:

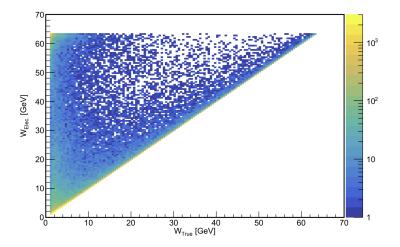
Non-radiative events: $\approx 44\%$; radiative events: \approx 56%

- Channel 6: $\approx 53\%$ ($\approx 30\%$ of total)
- Channel 7: $\approx 30\%$ ($\approx 17\%$ of total)
- Channel 8: $\approx 17\%$ ($\approx 9\%$ of total)

▲ 同 ▶ → ● ▶


Effects on W, Q^2 , x

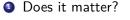
<ロト < 四ト < 三ト < 三ト


э

Effects on W, Q^2 , x

< □ > < 同 > < 回 > < 回 > < 回 >

Effects on W, Q^2 , x



Tucker Hwang (UC Berkeley)

UC EIC 2022

<ロト < 四ト < 三ト < 三ト

э

- What can we learn about these photons?
- What corrections can we apply?

Altered electron momentum \implies altered x and Q^2

Does it matter? Yes!

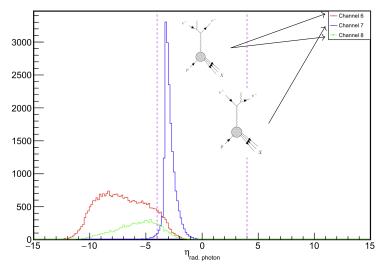
- What can we learn about these photons?
- What corrections can we apply?

Altered electron momentum \implies altered x and Q^2

Does it matter? Yes!

What can we learn about these photons?

What corrections can we apply?

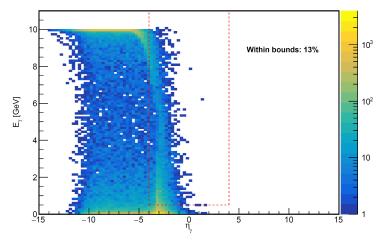

Altered electron momentum \implies altered x and Q^2

10/21

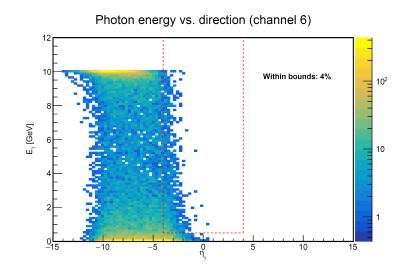
Estimated photon detection thresholds: E > 0.5 GeV, $|\eta| < 4$

3

Radiated photon pseudorapidity



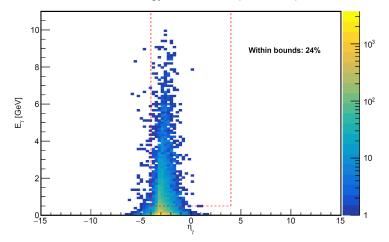
< ≥ > < ≥ >
UC EIC 2022


< A > <

11/21

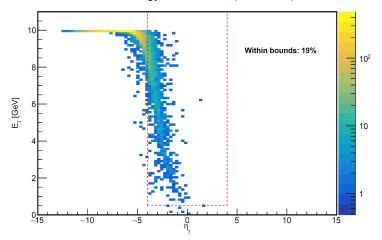
Photon energy vs. direction (all channels)

< (17) × <



UC EIC 2022

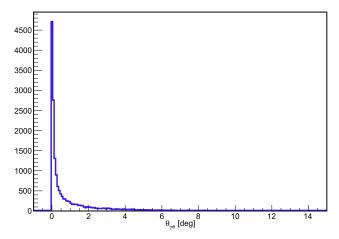
< A > <


→ ∃ →

Photon energy vs. direction (channel 7)

UC EIC 2022

Photon energy vs. direction (channel 8)

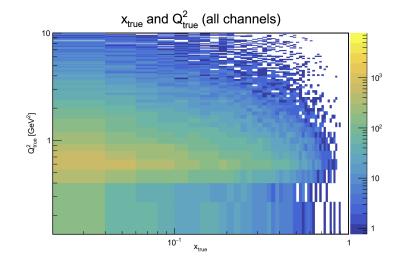


UC EIC 2022

< A > <

Radiative photon detection: $\theta_{\gamma e}$

Angle between radiated photon and scattered electron (channel 7 only)



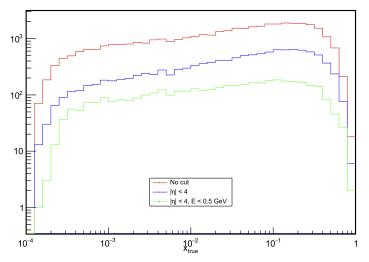
• Implications on (required) calorimeter position resolution

Tucker Hwang (UC Berkeley)

QED radiative corrections

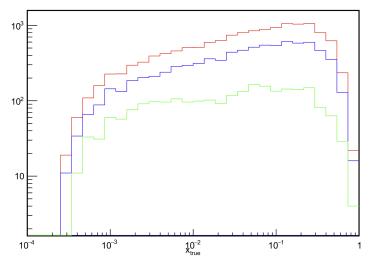
<=>> < ≣ > < ≣ > ≡ < つ < ○ UC EIC 2022 12/21

Tucker Hwang (UC Berkeley)

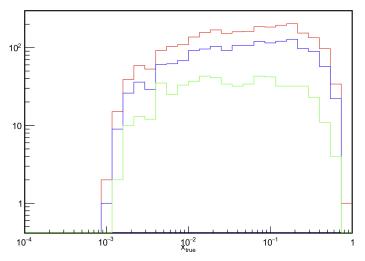

UC EIC 2022

・ロ・ ・ 四・ ・ ヨ・ ・

13/21


э

 $Q^2 < 1 \text{ GeV}^2$


< 回 ト く 注 ト く 注 ト UC EIC 2022

 $1 \text{ GeV}^2 < Q^2 < 4 \text{ GeV}^2$


UC EIC 2022

 $4 \text{ GeV}^2 < Q^2 < 10 \text{ GeV}^2$

< 1 k

 $Q^2 > 10 \text{ GeV}^2$

UC EIC 2022

< 1 k

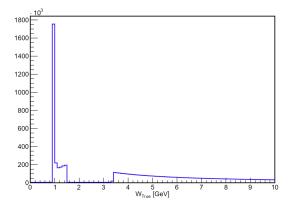
∃ →

• Mid-low Q^2 (around 0.5~1 GeV²), low $x \approx 10^{-2}$ is highest-statistics region

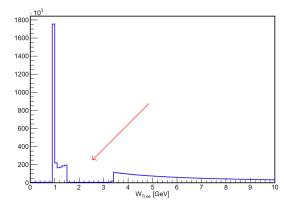
Radiative event characterization: x, Q^2

- Mid-low Q^2 (around 0.5~1 GeV²), low $x \approx 10^{-2}$ is highest-statistics region
- Higher $Q^2 \implies$ higher accessible x; smaller available regions of x

Tucker Hwang (UC Berkeley)

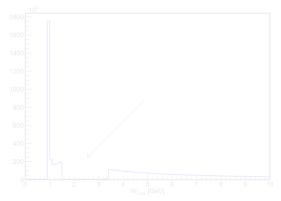

QED radiative corrections

UC EIC 2022


・ロト ・回ト ・ヨト ・ ヨト

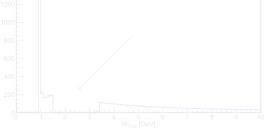
14/21

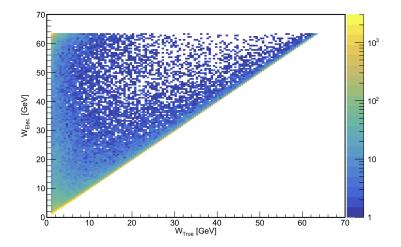
3


イロト 不得下 イヨト イヨト

イロト 不得下 イヨト イヨト

14/21


• Gap in events with 1.5 GeV $< W_{true} < 3.4$ GeV



· < 클 > < 클 > 클 UC EIC 2022

< 47 ▶

- Gap in events with 1.5 GeV < $W_{\rm true}$ < 3.4 GeV
- \bullet SOPHIA used for $W_{\rm true} < 1.5$ GeV; LEPTO for $W_{\rm true} > 3.4$ GeV
- SOPHIA limit is a simulation parameter, but LEPTO threshold is not
- Update to 4.6.20 includes LEPTO threshold

UC EIC 2022

< □ > < 同 > < 回 > < 回 > < 回 >

TOTAL EVENT NUMBER 100000		
NEUTRAL CURRENT / ELASTIC + SOFT&VIRTUAL 42388	8.5410E-01	
NEUTRAL CURRENT / LEPT. INITIAL STATE RADIAT. 30509	3.5575E-01	
NEUTRAL CURRENT / LEPT. FINAL STATE RADIAT. 17979	4.8998E-01	
NEUTRAL CURRENT / LEPT. COMPTON CONTRIBUTION 9124	4.2735E-01	
*************	*****	
Program performance		
100000 Events were accepted by HERACLES		
0 Events do not have min W-remnant in HERACLE	S	
75019 Events passed fragmentation in LEPTO		
0 Events not accepted for fragmentation in LE	PTO	
746 Events failed fragmentation in LEPTO		
11490 Events passed fragmentation in SOPHIA		
12745 Events failed fragmentation in SOPHIA		
Cross section was corrected:		
Total cross section is now SIGTOT = 0.15047E+04 nb		

TOTAL EVENT NUMBER	100000		
NEUTRAL CURRENT / ELAST	IC + SOFT&VIRTUAL	42388	8.5410E-01
NEUTRAL CURRENT / LEPT.	INITIAL STATE RADIAT.	30509	3.5575E-01
NEUTRAL CURRENT / LEPT.	FINAL STATE RADIAT.	17979	4.8998E-01
NEUTRAL CURRENT / LEPT.	COMPTON CONTRIBUTION	9124	4.2735E-01
*****	******	******	*****
Program performance			
100000 Events we	ere accepted by HERACLES		
0 Events do	o not have min W-remnant in∣	HERACLES	
75019 Events pa	issed fragmentation in LEPTO		
0 Events no	ot accepted for fragmentatio	n in LEPTO	
746 Events fa	iled fragmentation in LEPTO		
11490 Events pa	issed fragmentation in SOPHI	A	
12745 Events fa	iled fragmentation in SOPHI	A	
Cross section was corrected:			
Total cross section is	now SIGTOT = 0.15047E+	04 nb	

→ ∃ →

 Failed, partial, non-accepted hadronizations by LEPTO and SOPHIA (e.g. for looking at X instead e⁻)

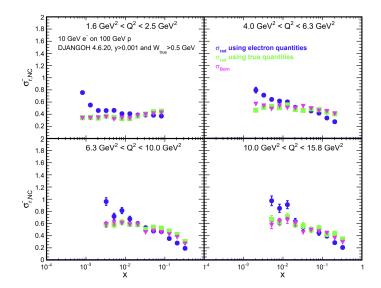
< ロ > < 同 > < 回 > < 回 >

- Failed, partial, non-accepted hadronizations by LEPTO and SOPHIA (e.g. for looking at X instead e⁻)
- Issues with conversion to HepMC and passing through eic-smear

0 Events not accepted for fragmentation in LEPTO 746 Events failed fragmentation in LEPTO 11490 Events passed fragmentation in SOPHIA 12745 Events failed fragmentation in SOPHIA Cross section was corrected: Total cross section is now SIGTOT = 0.15047E+04 nb

(4 個) トイヨト イヨト

- Failed, partial, non-accepted hadronizations by LEPTO and SOPHIA (e.g. for looking at X instead e⁻)
- Issues with conversion to HepMC and passing through eic-smear
- SOPHIA/LEPTO for mid-W events station in LEPTO

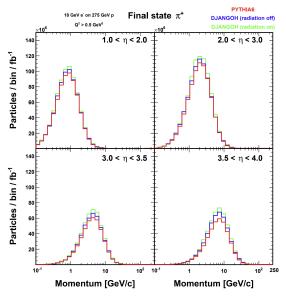

11490 Events passed fragmentation in SOPHIA 12745 Events failed fragmentation in SOPHIA Cross section was corrected: Total cross section is now SIGTOT = 0.15047E+04 nb

< 回 > < 三 > < 三 >

• Variation in reduced cross section

э

イロト 不得 トイヨト イヨト


UC EIC 2022

(日)

16/21

- Variation in reduced cross section
- Variation in final particle counts; comparing to pythiaeRHIC

- 4 目 ト 4 日 ト

Tucker Hwang (UC Berkeley)

UC EIC 2022

(日)

- Variation in reduced cross section
- Variation in final particle counts; comparing to pythiaeRHIC
- Fitting to real data

э

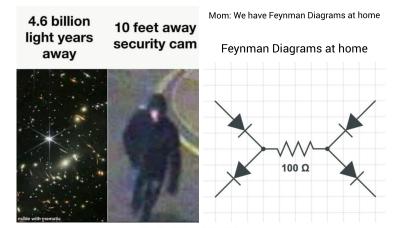
Current status and future work

Radiative QED photons confuse our measurements of kinematic variables (x, Q^2) that yield information on parton substructure. Accurate simulations can help us understand and correct for them.

Current status and future work

Radiative QED photons confuse our measurements of kinematic variables (x, Q^2) that yield information on parton substructure. Accurate simulations can help us understand and correct for them.

- Update for DJANGOH on BNL cluster underway
- Technical issues, questions on DJANGOH's approach
- Incorporating detector elements
- Sanity and cross-checks with other simulations (e.g. pythiaeRHIC)
- Closer looks at affected areas of phase space


QED radiation

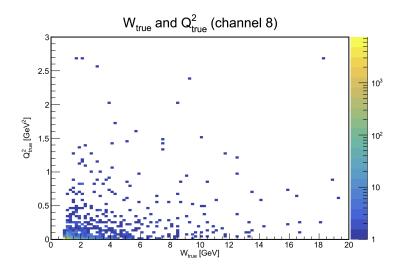
Altered electron momentum \implies altered x and Q^2

< A > < E

Any questions?

Smallest things in the Universe

Tucker Hwang (UC Berkeley)


Backup slides

yay

3

イロン イ理 とくほとう ほん

Channel 8 mysteries

∃ →