Performance and Validation of HG-CALI Simulation

Bishnu Karki

07/19/2022

- Validate G4, digitization reconstruction, selection against test-beam data
- Ultimately, we want to yield a credible baseline performance to be compared with AI reconstruction & codesign
- In this presentation, I will focus on energy response and resolution for both electrons and pions
- In the future, we'll include shower-shape and time information

Performance

Shower energy distribution

Cuts:

- E > 0.1 x E _{MIP} (E_{MIP} = 0.8 MeV)
- time < 150 ns

Reconstruction strategy:

Sum of all hits passing the threshold ("strawman")

Resolution =
$$\frac{\sigma}{\text{mean (E)}}$$

- Mostly Gaussian response even at high rapidity ($\eta^* = 3.7$)
- EM core of hadronic showers are well contained due to short X_0 in W

Performance Linearity

Linear fit: y=mx +c

Very linear for pions and electrons upto relevant energy range

Performance

Resolution (π⁻)

- Meets YR requirement on resolution even beyond required acceptance. (event with most rudimentary reconstruction algorithm; much more is yet to come from our AI project)
- With credibility given similarity with CALICE W-AHCAL data (reproduced that separately as well)

Validation of Simulation with test-beam data

Validation Adopting CALICE HCAL Setup in our Simulation

C Adloff et al 2014 JINST 9 P07022

T-AHCAL

Component	<i>d</i> [mm]
Steel Support	0.5
Tungsten	10
Air	1.25
Steel Cassette	2.0
Cable Mix	1.5
PCB	1.0
Scintillator	5.0
Steel Cassette	2.0
Air	1.25
Total	24.5

Transverse dimensions:72 x 72 cm² Longitudinal dimension: 90 cm

- DD4HEP framework for geometry
- FPFP_BERT_HP list of G4 for particle shower
- Adopted CALICE setup for both Tungsten and steel prototype
- Compare the CALICE test-beam data

Validation T-HCAL Resolution

Average energy deposition

- Similar study adopting CALICE Steel HCal
- Able to reproduce both linearity and resolution within 10% as reported by CALICE using test beam data

Validation with HCAL

Validate Fe/Sc calorimeters simulation in DD4Hep against test beam data

This is an extension of our validation effort for insert simulation against CALICE data

Fe/Sc HCAL (STAR / ATHENA design)

Resolution and mean energy

- DD4HEP framework for geometry
- Absorber (Fe) thickness=20 mm
- Scintillator thickness=3 mm
- π^{-} fired at 30 deg

Validation of STAR (ATHENA) simulation in DD4Hep

Fair agreement with STAR test-beam data

ECCE Design in DD4Hep

 Implemented a version of the ECCE HCAL in DD4Hep as well. Sampling structure but not WLS fiber or SiPM details or varied granularity https://github.com/rymilton/eic endcap insert/blob/main/compact/hcal ECCE.xml

Comparison of EIC reference (ECCE) to other Fe/Sc calorimeters

DD4Hep simulation results are compatible with expectation from previous experiments

Comparison of parameters used in other Fe/Sc calorimeters

- Various possible combinations of readout have been tried over time. It seems that resulting changes in
 resolution are modest at best. Expected as resolution is not driven by photo-statistics but sampling fluctuations
 and total thickness.
- We think that refining simulation to include the readout details are unlikely to change results much, so it does not seem a good investment of time

Summary

- We have established a "strawman" baseline reconstruction with high-granularity insert
- Strawman is a fair representation because design is compensated
- GNN should improve performance
- DD4Hep simulation of HCAL and HCAL Insert are validated against data and thus "realistic"
- DD4Hep model for all forward calorimeter subsystems (ECAL, ECAL insert + HCAL + HCAL insert) is complete and ready to use for physics simulations

Backup

Validation Resolution (π⁻)

Adopting CALICE setup in our simulation yields similar resolution as reported by CALICE JINST 7 P09017

Linearity for Fe-AHCAL

Similar test performed with W-AHCAL yielded similar agreement

CALICE Fe-AHCAL Resolution (e⁻)

20

T-AHCAL Resolution

Reconstruction

Sum of energy of HCAL insert hits + energy of HCAL hits (passing selection cut)

- Left tail is recovered by adding HCAL. No any significant leakage through the beam pipe hole
- Neutrons traverse hole and are measured, rather than being lost in small solid angle of beampipe exit
- Next steps: quantify this for a variety of angles and energies

Reconstructed hit energy and time distributions

Cuts:

• E> 0.1 x MIP (MIP = 0.6 MeV)

• t< 200 ns

Reconstruction strategy:

Sum of all hits passing the threshold ("strawman")