

Bringing Science Solutions to the World

Study of heavy flavor hadronization in eA collision via BeAGLE simulation

Wenqing Fan and Kyle Devereaux

California consortium meeting, 07/19/2022

Motivation

- Study nuclear modification of (light and heavy) hadrons in different eA system
 - Hadronization scale
 - Energy loss mechanism inside nucleus

Would be interesting to also look at Λ_c (Eloss on parton level or hadron level or mixed?)

Hadron multiplicity ratio (double ratio) R_{eA}^h

Hadron multiplicity ratio (double ratio) R_{eA}^h

2

Nuclear modification in e+A events generated by BeAGLE 3

- PythiaeRHIC (Pythia6)
 for ep collisions
- BeAGLE for eA collisions
 - Initial hard scattering and fragmentation by Pythia6
 - Nuclear evaporation, intra-nuclear cascade etc handled by DPMJet
 - Partonic energy loss by PyQM

wiki page

arXiv:2204.11998

Final state effects in BeAGLE

- Intra-nuclear cascade handled by DPMJet (FLUKA)
 - Intra-nuclear cascade: secondary low-energy interactions with spectator nucleons
- Energy loss effect handled by PyQM
 - This module applies energy loss to the partons_after they have been simulated by Pythia, but before they have been hadronized
 - Turned off in our studies so far
 - Not in the previous version of BeAGLE we were using (v1.01). Available in the latest version (v1.02), but still under test

Charm hadron reconstruction via hadronic decays

- Key of precision heavy flavor hadron reconstruction
 - High luminosity + detector acceptance
 - Good pointing/vertexing resolution
 - Good $\pi/K/p$ separation power

Charm hadron reconstruction via hadronic decays

- Key of precision heavy flavor hadron reconstruction
 - High luminosity + detector acceptance High statistics (increase SG)
 - Good pointing/vertexing resolution
 - Good $\pi/K/p$ separation power

High purity (decrease BG/SG)

ATHENA smearing and analysis selection

- Single track smearing benchmarked by ATHENA single particle simulation
 - p (magnitude) smeared by p resolution along the true p direction
 - ${\ensuremath{\,\bullet\)}}$ Vertex position smeared by DCA $_{r\varphi}$ and DCA $_z$
- Primary vertex smearing from multi-track fitting (Matt Kelsey's study)
- DIS event selection
 - Q² > 10 GeV² (event generated with Q² > 10 GeV²)
 - ✤ 0.05 < y < 0.8</p>
- D⁰ selection
 - p > 0.5GeV
 - Pair identified $K\pi$ tracks

 - Decay length > 40µm

All topological cuts in transverse plane

Κ

Why not full simulation yet?

- **DD4HEP + juggler: Canyonland 2.1 tag, DIS, Q²>10GeV**
 - Pythia events, beam crossing
 - * Event vertex distribution: $\sigma_x = 0.13$ mm, $\sigma_y = 0.008$ mm, $\sigma_z = 35.6$ mm
- Available info
 - Reconstructed particle momentum and matched MC true particles
- Missing info
 - No ancestry information for MC true particles (cannot tag the decay ancestry)
 - Reconstructed PID (currently using truth)
 - No reconstructed primary vertex, no reconstructed secondary vertex
 - DCA values currently calculated w.r.t (0,0,0) rather than the true event vertex
- Because of the missing info, it was very difficult to apply topology cuts

Fast simulation and ATHENA smearing

Single track smearing benchmarked by ATHENA single particle simulation

R_{eA} of D^0 and Λ_c with statistical uncertainty

- Using the generator results as central value
- Using the projected statistical uncertianty as the uncertainty

0.2

0.4

0.8

 $\textbf{Z}^{\Lambda_{c}}$

0.6

Detector effects

- Acceptance/efficiency (tracking+PID)
- Tracking and pointing resolution
- **PID** (π /K/p separation power)

Low p cutoff using DIRC+dRICH as PID does not affect D⁰ significantly, but it affects Λ_c significantly, especially at low pT and $|\eta|>1$

Summary

- Fast smearing framework with ATHENA detector parameters
 - No realistic reconstructed PID info yet
 - Update the smearing parameters with the Detector1 tracking setup
 - Switching to full simulation if all the necessary information are available
- More investigation on the final state effects in BeAGLE
 - Collision geometry
 - Intra-Nuclear Cascade (INC) effect
 - Energy loss model: PyQM (<u>https://arxiv.org/pdf/2203.16665.pdf</u>)
- Model comparison
 - Different mechanism, qhat

FIG. 11. Relevant quantities to describe the collision geometry. The effective interaction length, d, is the distance between the photon-nucleon interaction point and the edge of the nucleus in the direction of the virtual photon, weighted by the nuclear density. The variable b is the impact parameter between d and the center of the nucleus.

arXiv: 2204.11998

Thanks! + Questions?

Detector effects: PID

- Using fast simulation to check the detector effects on D0 and Λ_c reconstruction
- Particle identification (PID)
 - No PID
 - Detector Matrix (DM) PID: no low p cutoff (can be covered by TPC and TOF)
 - DIRC+dRICH: with low p cutoff (1.4T and 3T), including or excluding misidentified particles
 - Caveat: assume perfect electron ID, ignore muons

EICUG YR

Deterctor Matrix					
Barrel	< 6 GeV				
Forward	< 10 GeV				
Backward	< 50 GeV				

		Threshold (GeV/c)			
radiator	index	e	π	Κ	р
quartz (DIRC)	1.473	0.00048	0.13	0.47	0.88
aerogel (mRICH)	1.03	0.00207	0.57	2.00	3.80
aerogel (dRICH)	1.02	0.00245	0.69	2.46	4.67
C_2F_6 (dRICH)	1.0008	0.01277	3.49	12.34	23.45
CF ₄ (gRICH)	1.00056	0.01527	4.17	14.75	28.03

Table 11.23: Table of Cherenkov thresholds for various media.

Fast simulation for DIRC and RICH

- Fast simulation for DIRC and dRICH
 - If particles can not reach DIRC (p_T > 0.19GeV for 1.4T, 0.40GeV for 3T), can be smaller if put DIRC closer to All-Si
 - If particles momentum is below the firing threshold for $\pi/K/p$

Veto mode: if track momentum above pion threshold but not firing the detector, then it cannot be pion

True particle	Pion	Kaon		Proton	
p < 0.13 (0.69)	$prob(\pi/K/p) = 0.7, 0.2, 0.1$				
p < 0.47 (2.46)		$prob(\pi/K/p) = 0, 0.6, 0.4$			
p < 0.88 (4.67)	prob(<i>π</i> /K/p) = 1, 0, 0	$prob(\pi/k/p) = 0.1.0$	$prob(\pi K/p) = 0, 0, 1$		
p < 6 (50)		$p(00(\pi/R/p) = 0, 1, 0)$		(x, p) = 0, 0, 1	

probability assigned according to multiplicity of different charged particles