MC studies to optimize pixel tracker

<u>Rey</u>nier Cruz-Torres July 19th, 2022

EIC tracker

•measures:

charged-particle momentum and direction
primary and secondary vertices
aids in PID

requirements for an EIC tracker:

- hermetic
- compact
- low-material budget
- excellent performance

Original LBNL MAPS-based all-silicon tracker concept designed and implemented in Geant by Y.S. Lai and E. Sichtermann (circa 2019)

MAPS-based trackers are at the center of all EIC detector concepts...

ATHENA

CORE

ECCE

MAPS-based trackers are at the center of all EIC detector concepts... literally

ATHENA

CORE

ECCE

MAPS-based trackers are at the center of all EIC detector concepts... literally

Some of Berkeley's tracking work since 2020

- Geometry implementation in ElCroot (Y.S. Lai, E. Sichtermann)
- •Geometry implementation in Fun4All (D. Dixit)
- •Characterization of concept performance (both fast and full simulations) (E. Sichtermann, Y. Song, W. **DeGraw**)
 - Momentum resolution
 - Angular resolution (at vertex and at PID detectors)
 - Distance of closest approach (DCA) and vertexing resolution
 - •Studies carried out with different particle species and jets (F. Torales Acosta)
 - •Pixel-size scan
- Geometry optimization
 - •Barrel, disks, support and services
 - •Overall detector length and radius
- •Study of crossing-angle effects
- •Material-budget parametrization (L. Greiner)

- Exploration of hybrid concepts
 - •Large r/lzl MPGDs
- Characterization of material budget and material impact on detector performance
- •Comparison with different magnet concepts
- Comparison to fast simulations and benchmarks of DD4HEP-based simulations (W. Fan, S. Li, E. Sichtermann)
- Contributions to YR
 - Performance parametrizations
 - •All-silicon tracker section
- •arXiv:2102.08337
- Realistic seeding implementation and benchmark in ACTS (Y.S. Lai, W. Fan)
- •Material maps in DD4HEP (S. Li)
- •Optimizing detector-1 tracker

Some of Berkeley's tracking work since 2020

- •Geometry implementation in ElCroot (Y.S. Lai, E. Sichtermann)
- Geometry implementation in Fun4All (D. Dixit)
- •Characterization of concept performance (both fast and full simulations) (E. Sichtermann, Y. Song, W. DeGraw)
 - Momentum resolution
 - Angular resolution (at vertex and at PID detectors)
 - Distance of closest approach (DCA) and vertexing resolution
 - •Studies carried out with different particle species and jets (F. Torales Acosta)
 - Pixel-size scan
- Geometry optimization
 - •Barrel, disks, support and services
 - •Overall detector length and radius
- Study of crossing-angle effects
- Material-budget parametrization (L. Greiner)

• Exploration of hybrid concepts

- •Large r/lzl MPGDs
- Characterization of material budget and material impact on detector performance
- •Comparison with different magnet concepts
- Comparison to fast simulations and benchmarks of DD4HEP-based simulations (W. Fan, S. Li, E. Sichtermann)
- Contributions to YR
 - Performance parametrizations
 - All-silicon tracker section
- •arXiv:2102.08337
- Realistic seeding implementation and benchmark in ACTS (Y.S. Lai, W. Fan)
- Material mans in DD4HEP (S. Li)

•Optimizing detector-1 tracker

Motivation

Several aspects need to be revisited:

- new developments (e.g. beampipe bake-out radius)
- material budget near sagitta
- details of support structure
- YR performance requirements

ECCE tracking configuration

Forward:

- 5 Si layers ($\sigma = 10/\sqrt{12} \ \mu m$, 0.48% X0)
- 1 ACLGAD ($\sigma = 30 \ \mu m$)

Backward:

- 4 Si layers ($\sigma = 10/\sqrt{12} \ \mu m$, 0.48% X0)

- 1 ACLGAD (σ = 30 μ m) behind mRICH

From ECCE proposal to new configuration

Outline

- barrel studies
- disk studies
- support updates

- disk studies

- support updates

Outline

- barrel studies

Momentum resolution performance of ECCE Barrel

Barrel optimization with fast simulations

Configuration proposed and studied in fast simulations by E. Sichtermann

Both settings have: uRwell R = 51, 77 cm ACLGAD R = 64 cm

ECCE has support layer: R = 6.3 (0.9%), 23.5 cm (0.3% X0)

New has support layer: R = 5.7 (0.1%), 12.6 cm (0.1% X0)

> MAPS $\sigma = 10/\sqrt{12} \mu m$ μ Rwells $\sigma = 55 \ \mu$ m ACLGAD $\sigma = 30 \ \mu m$

Did we go through this redesign to just end up with the same performance?

Can we do anything to improve this performance further?

14

Did we go through this redesign to just end up with the same performance?

Can we do anything to improve this performance further?

Further improving barrel performance

Reduction of material budget near sagitta

Targeting the constant term

Expansion of highest-R silicon layer

uRwells (R = 51, 77 cm) point res. = 55 um ACLGAD (R = 64 cm) 12 14 10

Performance below requirement when innermost three layers are not supported

uRwells (R = 51, 77 cm) point res. = 55 um ACLGAD (R = 64 cm) 14 12 10

Material near innermost two layers doesn't significantly degrade dp/p

The performance with both layers is dominated by the support near the sagitta

Further improving barrel performance

Reduction of material budget near sagitta

Expansion of highest-R silicon layer

Targeting the linear term

The larger the radius the better the dp/p performance (and the larger the area)

> MAPS $\sigma = 10/\sqrt{12} \mu m$ μ Rwells σ = 55 μ m ACLGAD $\sigma = 30 \ \mu m$

B = BaBar

- barrel studies

- support updates

Outline

- disk studies

Disk layout

Insertion of a disk in each side + rearrangement of disks

Forward and backward regions are challenging primarily because of solenoidal B-field and beampipe

Momentum resolution results

Outline

- barrel studies
- disk studies

support updates

Updating support/service structure

ECCE support

Services need to come out of the end-points of vtx layers

Cone angle impacts the performance

ECCE support

LBNL support

ECCE support

LBNL support

Geant4 rendering of these concepts

- Ongoing efforts to advance the EIC tracker design (fast+full simulations)

Summary

- Ongoing efforts to advance the EIC tracker design (fast+full simulations)
- Barrel:
 - vertex layer position updated to account for beampipe bake-out

Summary

- new concept proposed / studied in fast simulations by E. Sichtermann - implemented in Fun4All and propagated to current simulation campaign - several clear avenues to further improve the barrel performance in a 1.4 T field

- Ongoing efforts to advance the EIC tracker design (fast+full simulations)
- Barrel:
 - vertex layer position updated to account for beampipe bake-out
 - new concept proposed / studied in fast simulations by E. Sichtermann
 - implemented in Fun4All and propagated to current simulation campaign
 - several clear avenues to further improve the barrel performance in a 1.4 T field
- Disks:
 - ongoing studies to find optimal disk configuration
 - challenging region (B field, beampipe)

Summary

- Ongoing efforts to advance the EIC tracker design (fast+full simulations)
- Barrel:

 - vertex layer position updated to account for beampipe bake-out - new concept proposed / studied in fast simulations by E. Sichtermann - implemented in Fun4All and propagated to current simulation campaign - several clear avenues to further improve the barrel performance in a 1.4 T field
- Disks:
 - ongoing studies to find optimal disk configuration
 - challenging region (B field, beampipe)
- Support structure:
 - implementing slightly more realistic support structure

Summary

- Synchrotron radiation background (Cruz Torres, Sterwerf) Tracking pattern recognition (Lai, Fan)

 - Optimization of tracker layout (Cruz Torres, Liang Gilman, Yeats, with Sichermann, Li)
- Seddigh, Lew, with Apadula, Li)
- Quantify low p_T PID requirements for Detector 1 (Fan) Radiative corrections (Hwang, with Barak Schmookler*) Study sensor cooling strategies (Liang Gilman, Yeats,
- Model tracker mechanics (Yeats, Liang Gilman, with Apadula)
- * UC EIC Fellow

Thank you!

Backup

Vertexing performance

$DCA \equiv Distance of Closest Approach$

ECCE vertexing configuration

Barrel index	lex R (cm) z _{min} (cm)		z _{max} (cm)
1	3.3	-13.5	13.5
2	4.35	-13.5	13.5
3	5.4	-13.5	13.5

Space needed for bake-out. Minimum radius cannot be < 3.6 cm

Need to understand DCA performance impact from a 36 mm inner radius, and potentially 42 mm

BaBar (1.4 T), $-0.5 < |\eta| < 0.5$

Vertexing performance

BaBar (1.4 T), $-0.5 < |\eta| < 0.5$

BaBar (1.4 T), $-0.5 < |\eta| < 0.5$

Disk-shaped portion of support

New proposed barrel configuration

ECCE

	z (cm)	r _{min} (cm)	r _{max} (cm)
-4	-106	5.5	41.5
-3	-79	4.5	40.5
-2	-52	3.5	36.5
-1	-25	3.5	18.5
1	25	3.5	18.5
2	52	3.5	36.5
3	73	4.5	40.5
4	106	5.5	41.5
5	125	7.5	43.4

Disk layout

LBNL

	z (cm)	r _{min} (cm)	r _{max} (cm)
-5	-130	5.3	59.0
-4	-100	4.3	45.7
-3	-70	3.6	40.6
-2	-45	3.6	22.0
-1	-25	3.6	18.1
1	25	3.6	18.1
2	45	3.6	33.0
3	70	4.0	40.6
4	100	5.3	40.6
5	130	7.0	51.5
6	160	8.5	63.0

0.48% X0 per disk

New proposed barrel configuration

	r (cm)	length (cm)	X/X0	Α
1	3.6	27	0.05%	0
2	4.8	27	0.05%	0
Support	5.7	15.4	0.1%	
3	12.3	27	0.05%	(
Support	12.6	30.6	0.1%	
4	30	77	0.25%	
5	40	104	0.55%	

Disk Material budget

		X0 (cm)	X (cm)	X/X0
Si	Si	9.37	0.035	0.00373533
metal connection	Al	8.897	1.50E-03	0.0001686
HDI	kapton	28.57	2.00E-03	7.0004E-05
Cooling	Water	36.08	1.00E-02	0.00027716
Support	Graphite	19.32	5.00E-03	0.0002588
Support Gap	Air	3.04E+04	1	3.2906E-05
Support 2	Graphite	19.32	5.00E-03	0.0002588
			Tot	0.00480159

dp/p impact of MPGDs in the barrel

dp/p impact from barrel MPGDs

Barrel MPGDs (as specified in this configuration) only has some dp/presolution impact in the highermomentum regime.

However, this is not the only figure of merit and, when simulations with backgrounds are carried out, these layers may have a larger impact

> MAPS $\sigma = 10/\sqrt{12} \mu m$ μ Rwells σ = 55 μ m ACLGAD $\sigma = 30 \ \mu m$

B = BaBar

Support "concepts"

MAPS $\sigma = 10/\sqrt{12} \mu m$ μ Rwells σ = 55 μ m ACLGAD $\sigma = 30 \ \mu m$

B = BaBar

12

MAPS $\sigma = 10/\sqrt{12} \mu m$ μ Rwells σ = 55 μ m ACLGAD $\sigma = 30 \ \mu m$

B = BaBar

12

