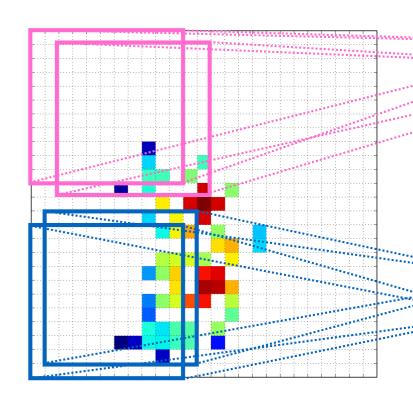
Al-driven detector design for the EIC

Benjamin Nachman

Lawrence Berkeley National Laboratory

bpnachman.com bpnachman@lbl.gov



AIWG Special Meeting July 20, 2022

Overview

Detector Model

parameters of interest θ

Overview

Detector Model

parameters of interest θ

Goal: find best θ given a metric(s).

Overview

Detector Model

parameters of interest heta

Goal: find best θ given a metric(s).

Challenge: detector output is high-dimensional and θ may be high-dimensional.

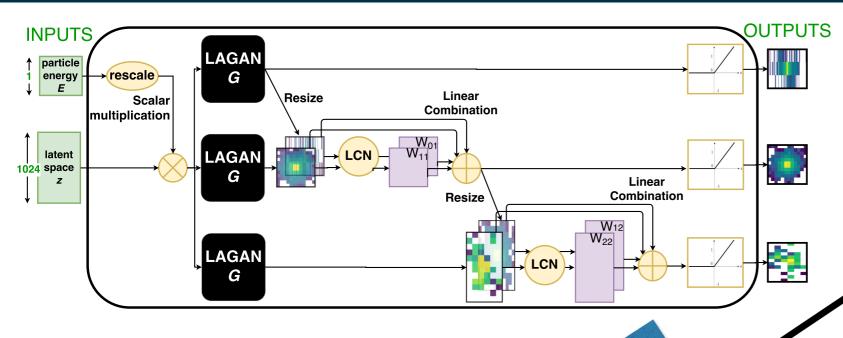
Detector Model

parameters of interest heta

Goal: find best θ given a metric(s).

Challenge: detector output is high-dimensional and θ may be high-dimensional.

Today: can we use ML to (1) interpolate in the high-dimensional space, (2) define optimal metrics, and (3) find the best values of θ .



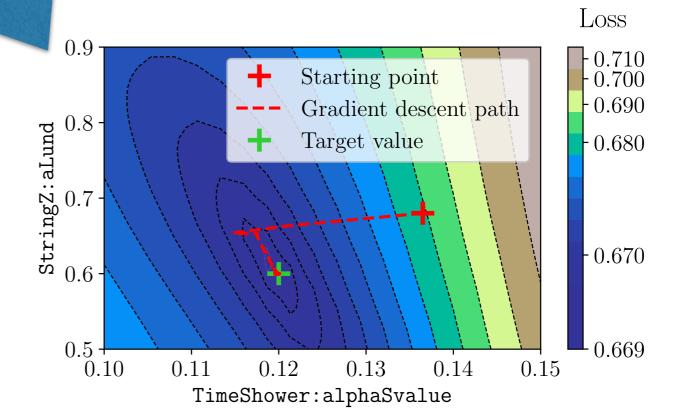
Detector Modeling

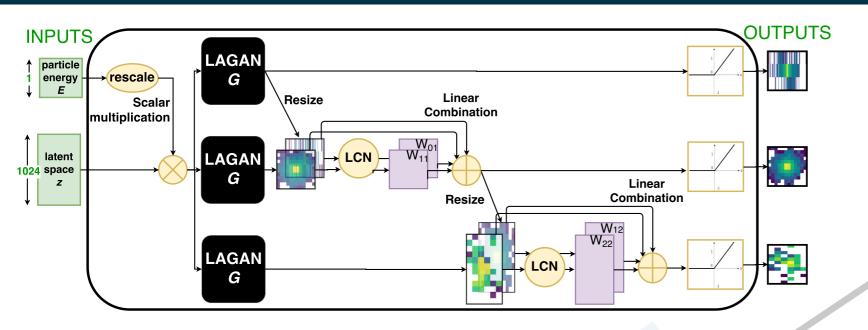
Surrogate Model
Differentiable Simulation

For free: GPUenabled fast sim.

Gradient-based Gradient-free

ML-based Optimization





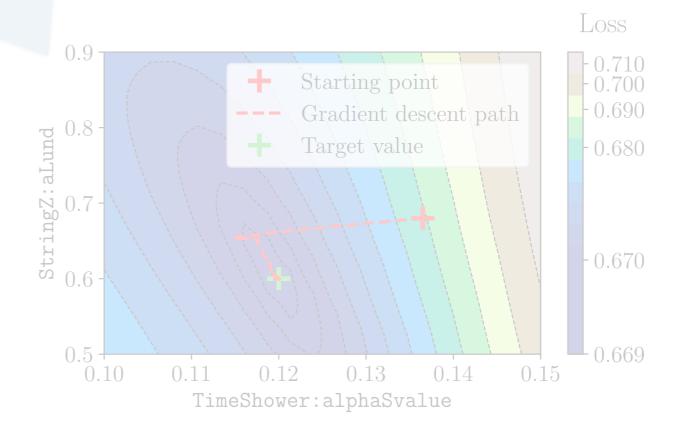
Detector Modeling

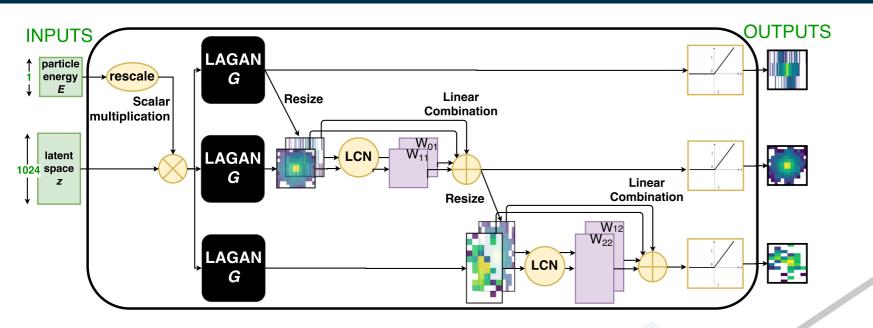
Surrogate Model Differentiable Simulation

For free: GPUenabled fast sim.

Gradient-based
Gradient-free

ML-based Optimization





Detector Modeling

Surrogate Model

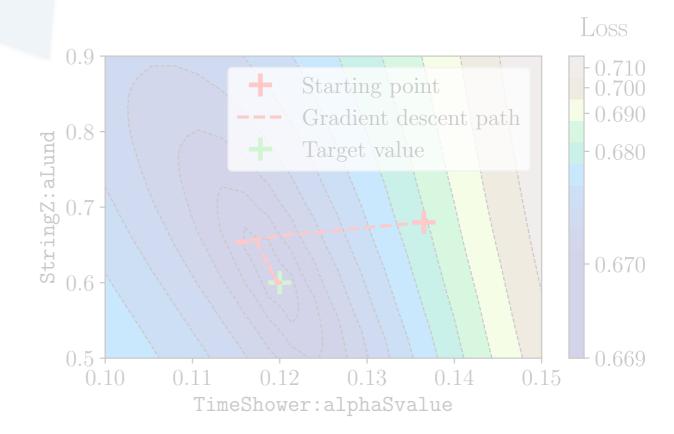
Differentiable Simulation

For free: GPUenabled fast sim.

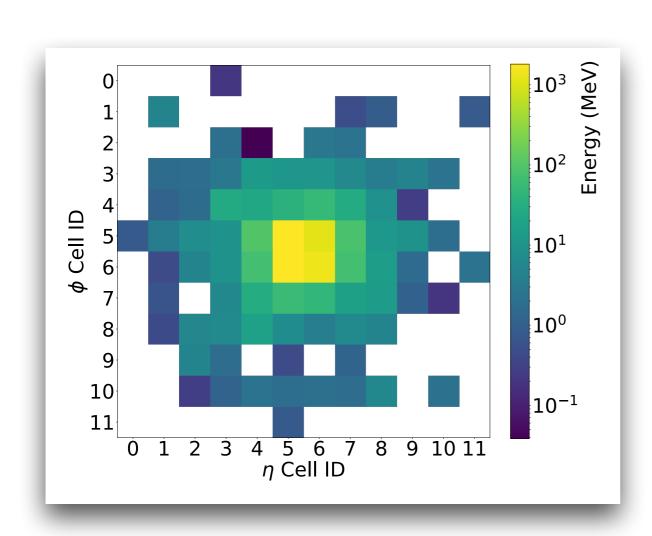
Gradient-based
Gradient-free

ML-based Optimization

8

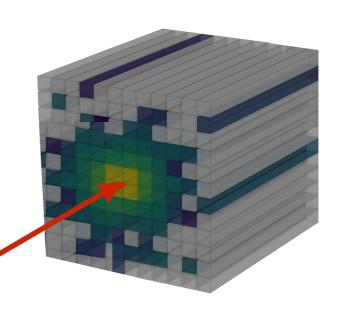


Surrogate Models with ML



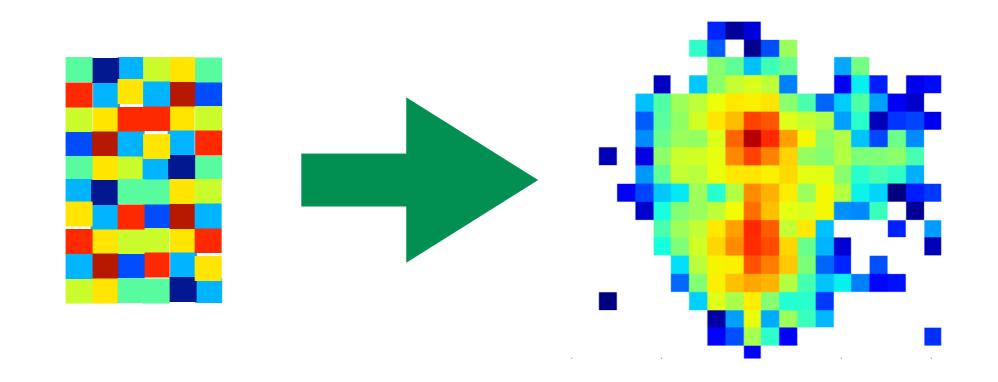
Can we train a neural network to emulate the detector simulation?

Grayscale images:
Pixel intensity =
energy deposited



Introduction: generative models

A generator is nothing other than a function that maps random numbers to structure.



Deep generative models: the map is a deep neural network.

Tools

GANS

Generative Adversarial Networks

Scorebased

NFs

Normalizing Flows

VAEs

Variational Autoencoders

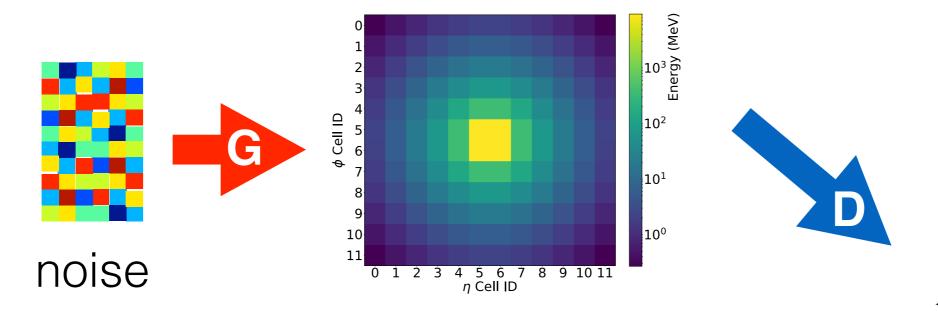
Deep generative models: the map is a deep neural network.

Introduction: GANs

12

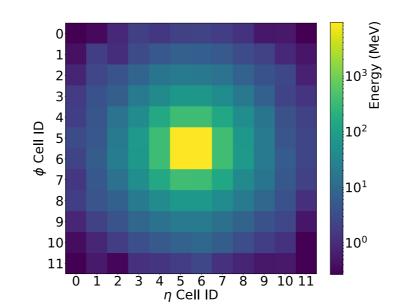
Generative Adversarial Networks (GANs):

A two-network game where one maps noise to structure and one classifies images as fake or real.



{real,fake}

When **D** is maximally confused, **G** will be a good generator

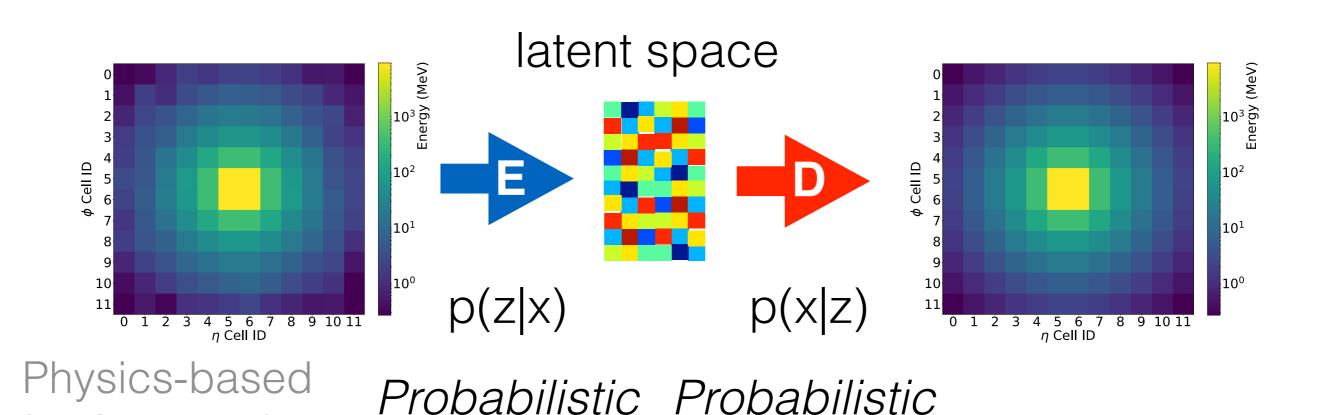


Physics-based simulator or data

simulator or data

Variational Autoencoders (VAEs):

A pair of networks that embed the data into a latent space with a given prior and decode back to the data space.



decoder

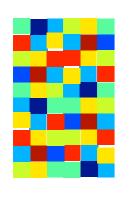
encoder

Introduction: NFs

Normalizing Flows (NFs):

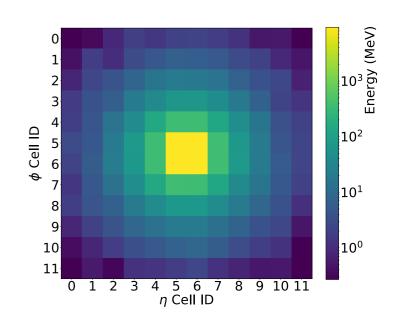
A series of invertible transformations mapping a known density into the data density.

Optimize via maximum likelihood



Invertible transformations with tractable Jacobians

$$p(x) = p(z) |dF^{-1}/dx|$$

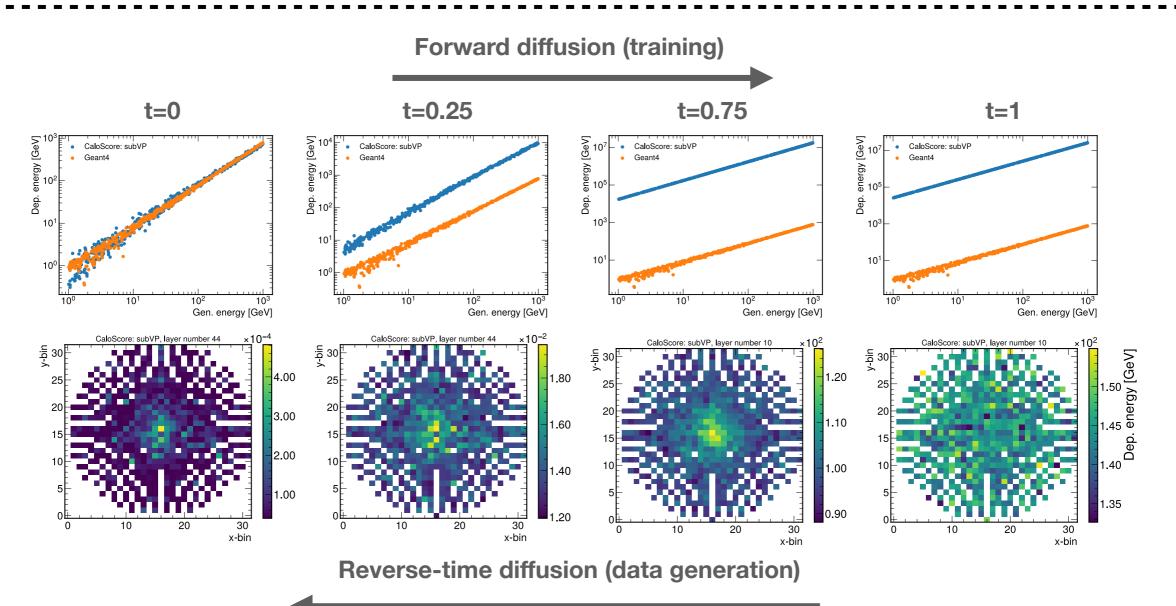


Introduction: Score-based

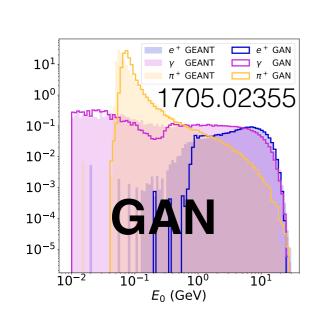
15

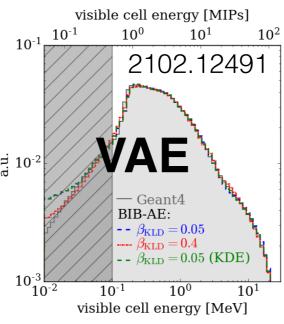
Score-based

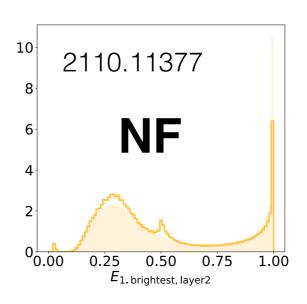
Learn the gradient of the density instead of the probability density itself.



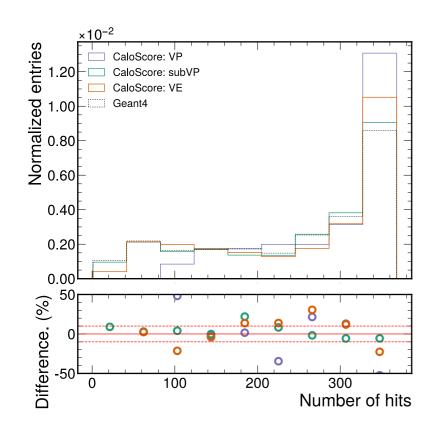
Calorimeter ML Surrogate Models

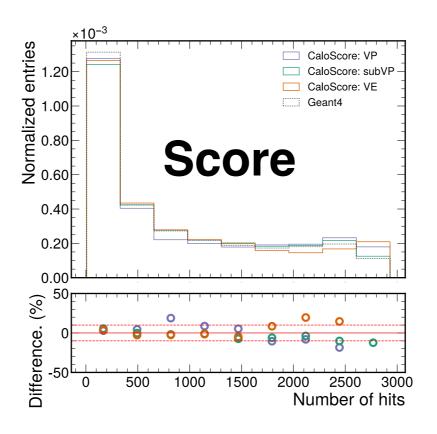


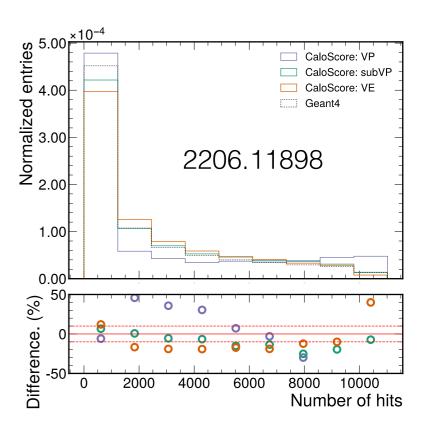




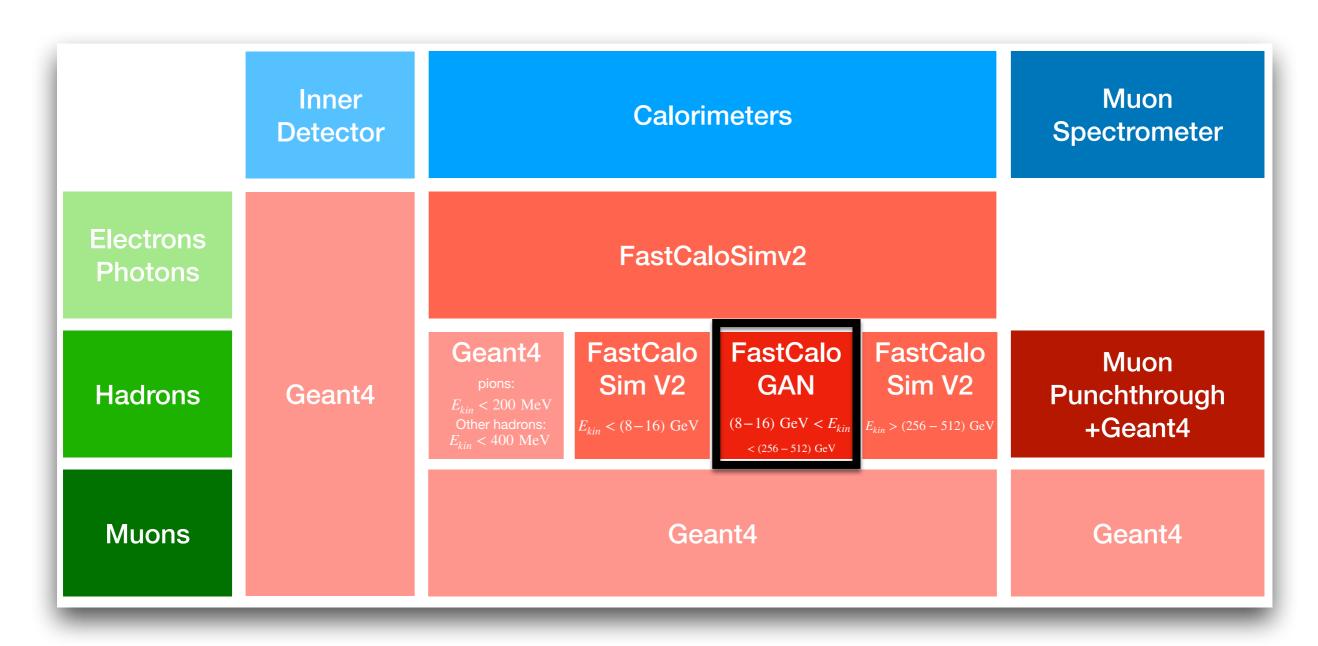
Many papers on this subject see the <u>living</u> <u>review</u> for all







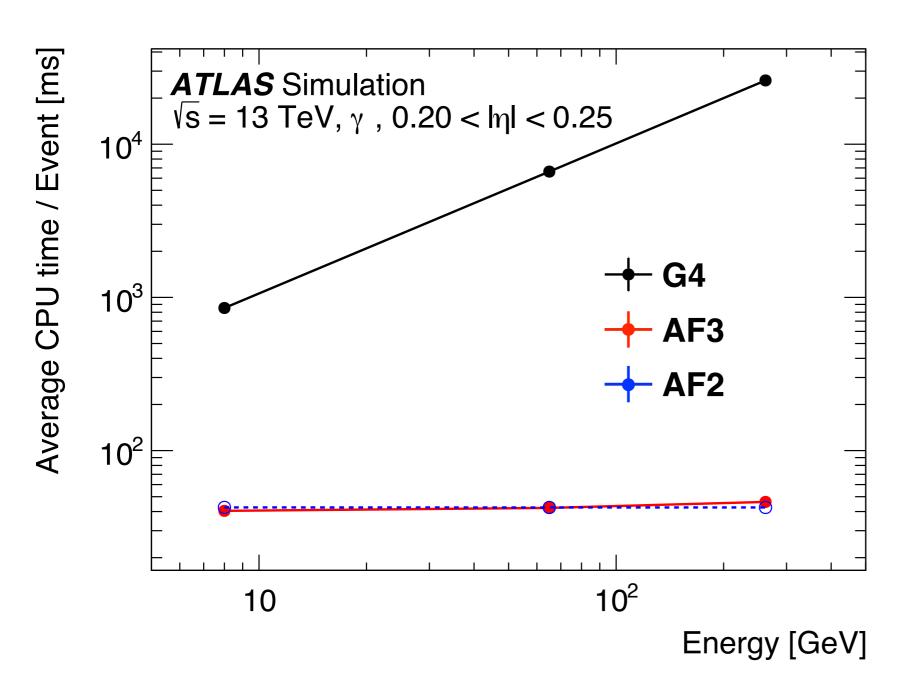
Integration into real detector sim.



The ATLAS Collaboration fast simulation (AF3) now includes a GAN at intermediate energies for pions

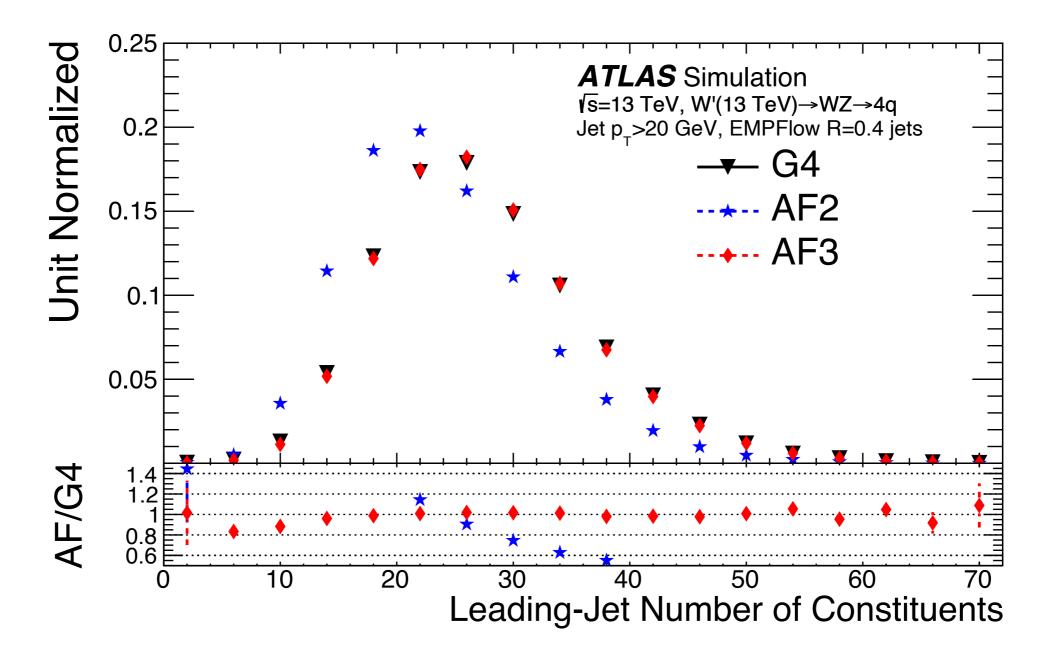
18

Integration into real detector sim.

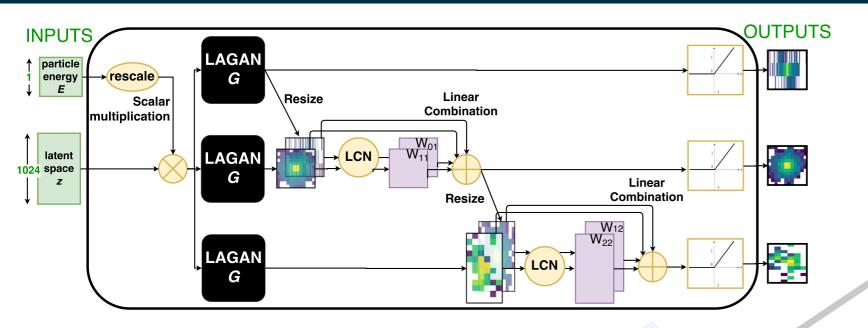


As expected, the fast sim. timing is independent of energy, while Geant4 requires more time for higher energy.

Integration into real detector sim.



The new fast simulation (AF3) significantly improves jet substructure with respect to the older one (AF2).



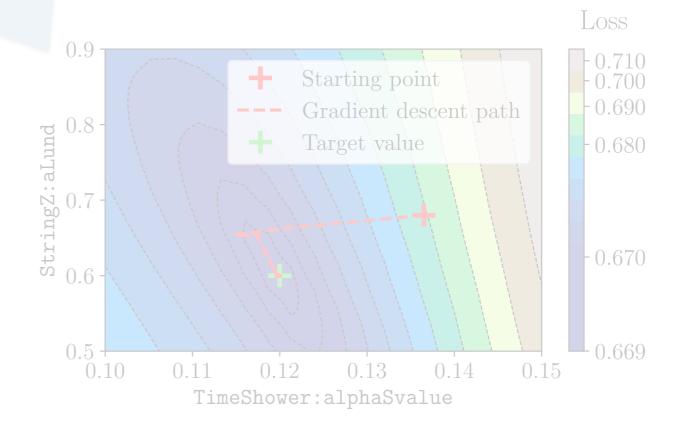
Detector Modeling

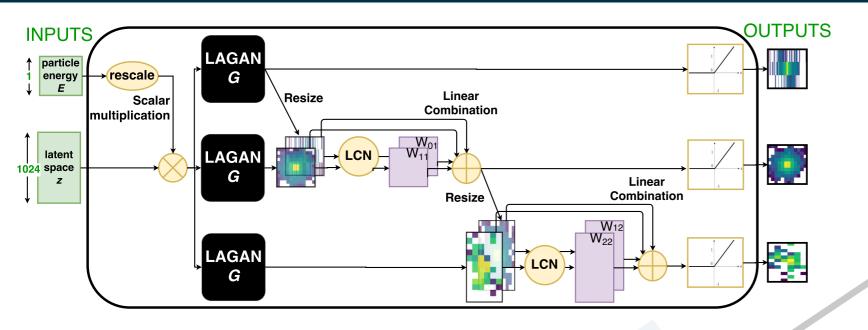
Surrogate Model Differentiable Simulation

For free: GPUenabled fast sim.

Gradient-based
Gradient-free

ML-based Optimization





Detector Modeling

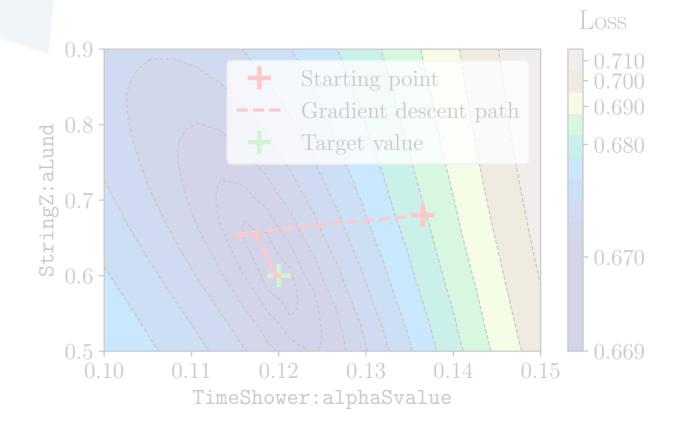
Surrogate Model

Differentiable Simulation

For free: GPUenabled fast sim.

Gradient-based
Gradient-free

ML-based Optimization

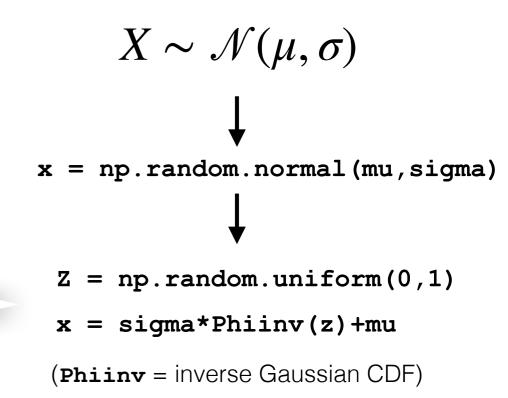


$$X \sim \mathcal{N}(\mu, \sigma)$$

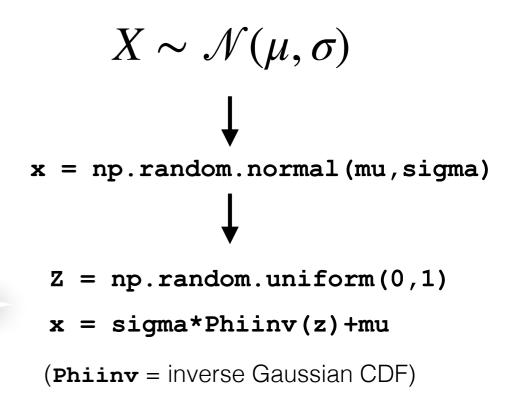
$$X \sim \mathcal{N}(\mu, \sigma)$$

x = np.random.normal(mu, sigma)

Removed randomness from simulator

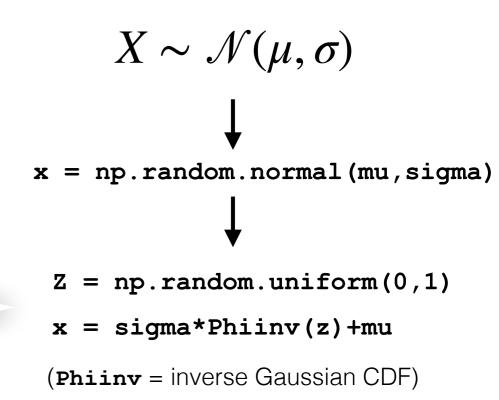


Removed randomness from simulator



Now, can compute $\partial/\partial\mu$ and $\partial/\partial\sigma$

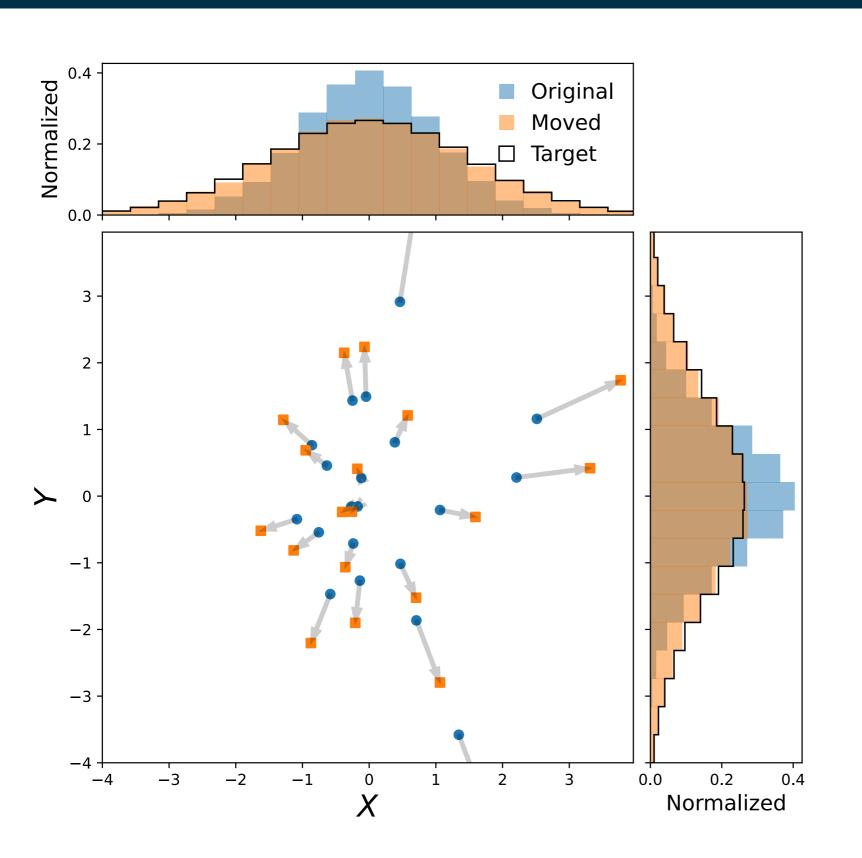
Removed randomness from simulator



Now, can compute $\partial/\partial\mu$ and $\partial/\partial\sigma$

We can then do:

$$sim(\mu_0 + \epsilon) \approx sim(\mu_0) + \frac{\partial sim}{\partial \mu} \epsilon$$



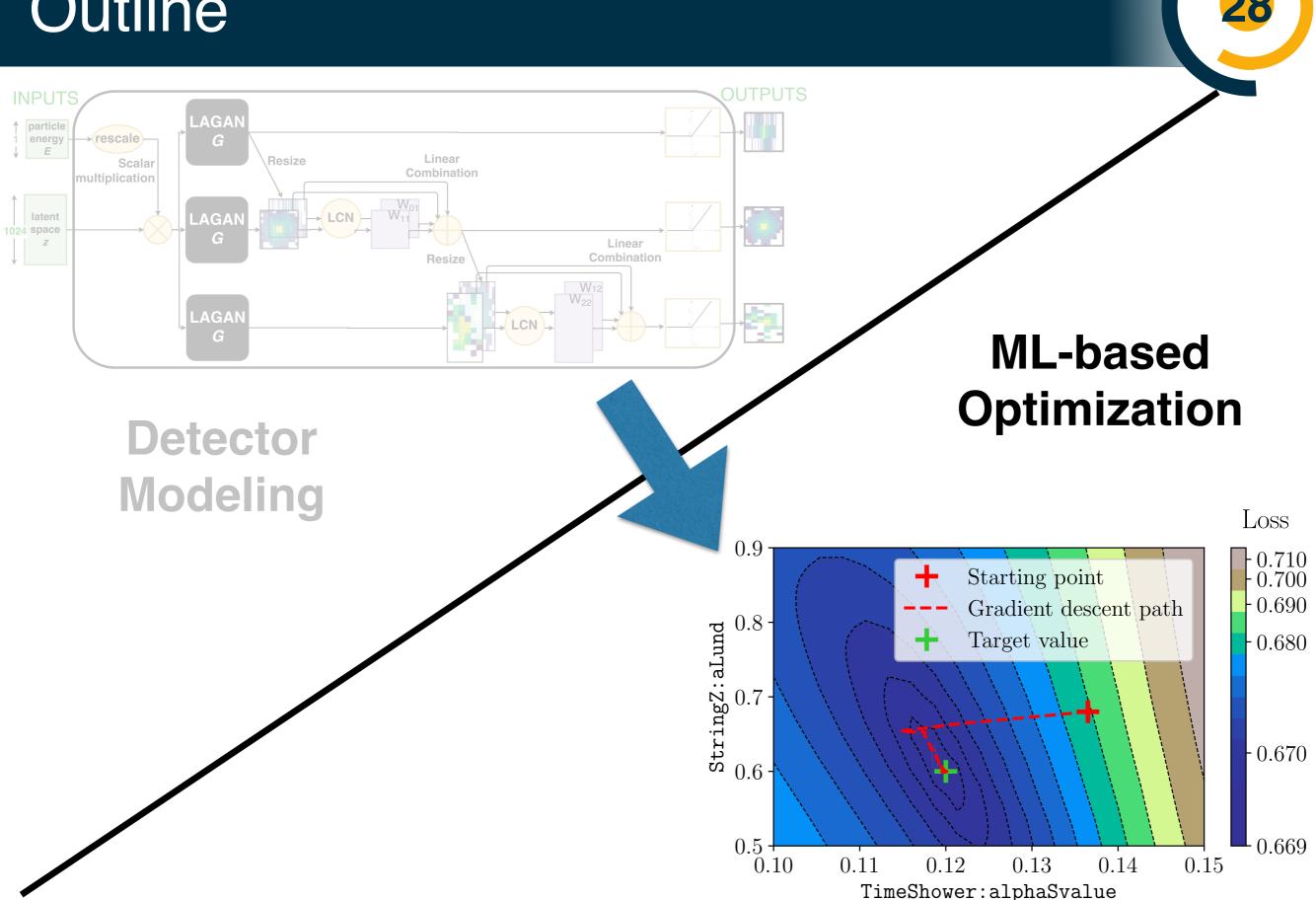
$$X \sim \mathcal{N}(\mu, \sigma)$$
 $\mathbf{x} = \text{np.random.normal(mu, sigma)}$
 $\mathbf{z} = \text{np.random.uniform(0,1)}$
 $\mathbf{x} = \text{sigma*Phiinv(z)+mu}$

(Phiinv = inverse Gaussian CDF)

Now, can compute $\partial/\partial\mu$ and $\partial/\partial\sigma$

We can then do:

$$sim(\mu_0 + \epsilon) \approx sim(\mu_0) + \frac{\partial sim}{\partial \mu} \epsilon$$

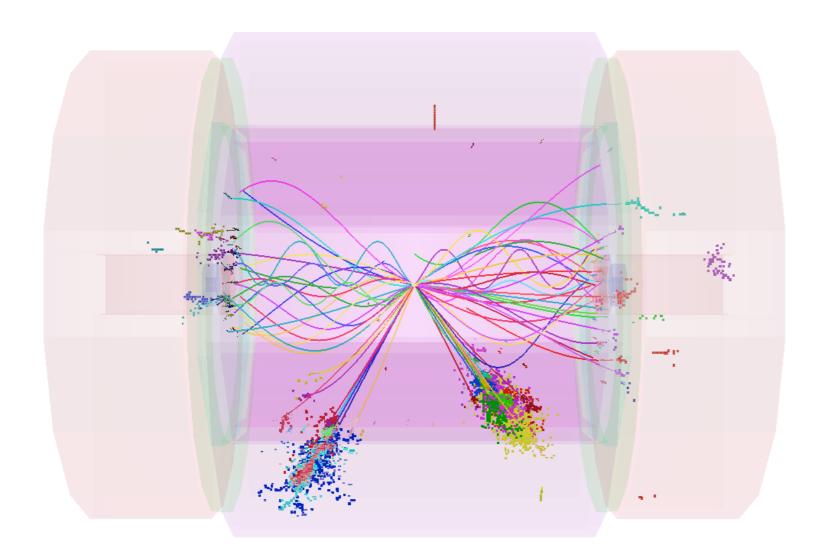


Here, instead of emulating $p(x \mid \theta)$ directly, we learn $\frac{p(x \mid \theta)}{p(x \mid \theta_0)}$

(turns the problem of generation into classification)

Here, instead of emulating $p(x \mid \theta)$ directly, we learn $\frac{p(x \mid \theta)}{p(x \mid \theta_0)}$

(turns the problem of generation into classification)



Benefit: easy to integrate complex data structure (symmetries, etc.)

Downside: large weights when θ is far from θ_0

Step 1: Differentiable Surrogate Model

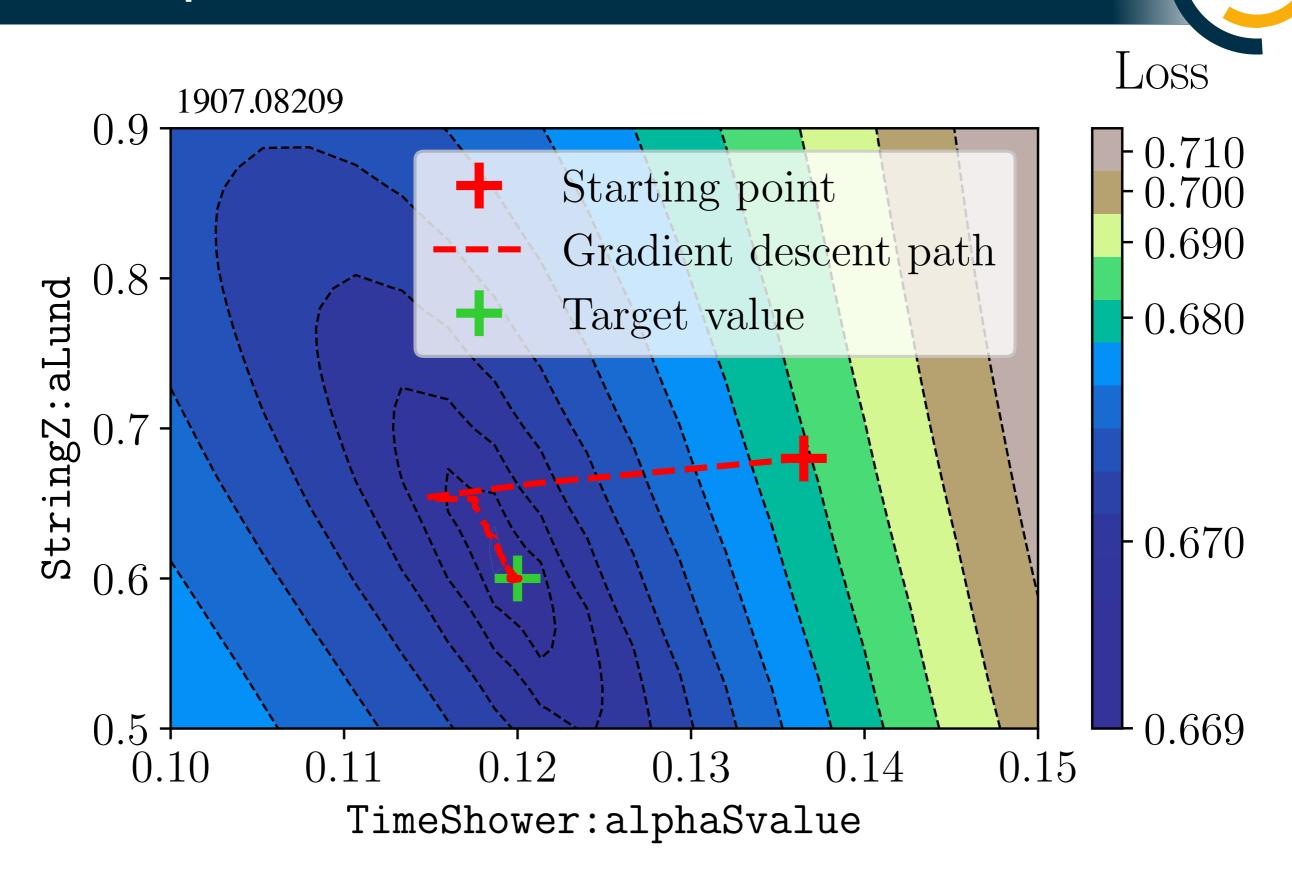
$$f(x,\theta) = \underset{f'}{\operatorname{argmax}} \sum_{i \in \theta_0} \log f'(x_i,\theta) + \sum_{i \in \theta} \log(1 - f'(x_i,\theta))$$

Step 1: Differentiable Surrogate Model

$$f(x,\theta) = \underset{f'}{\operatorname{argmax}} \sum_{i \in \theta_0} \log f'(x_i,\theta) + \sum_{i \in \theta} \log(1 - f'(x_i,\theta))$$

Step 2: Gradient-based optimization

$$\theta^* = \underset{\theta'}{\operatorname{argmax}} \sum_{i \in \theta_0} \log f(x_i, \theta') + \sum_{i \in \theta_1} \log(1 - f(x_i, \theta'))$$

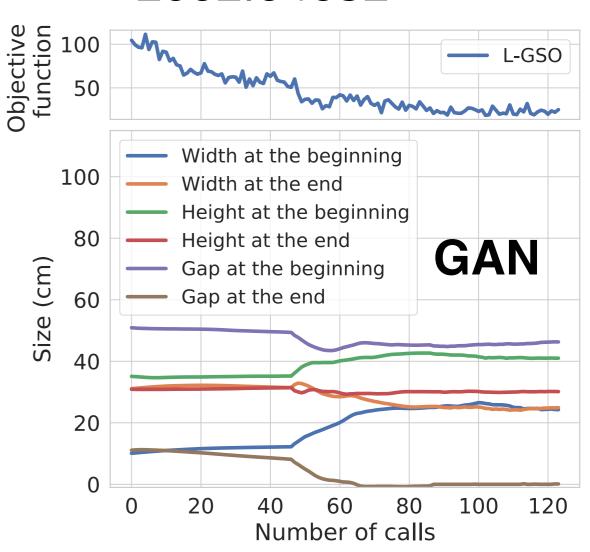


33

Other examples

2 04632

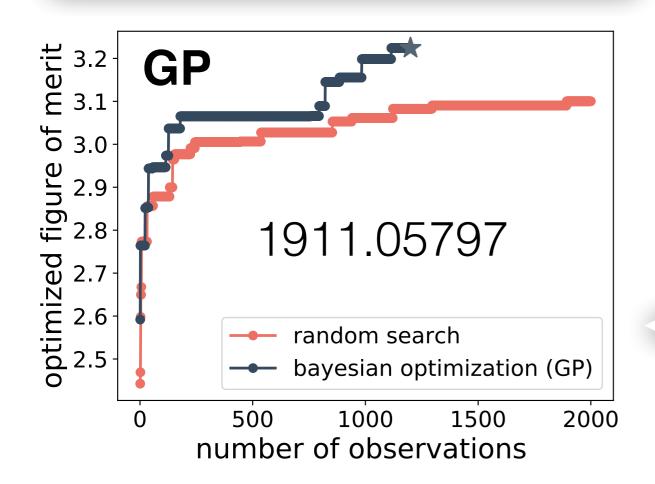
Example: Optimizing the active muon shield of the SHIP experiment (proposed fixed-target @ CERN SPS)

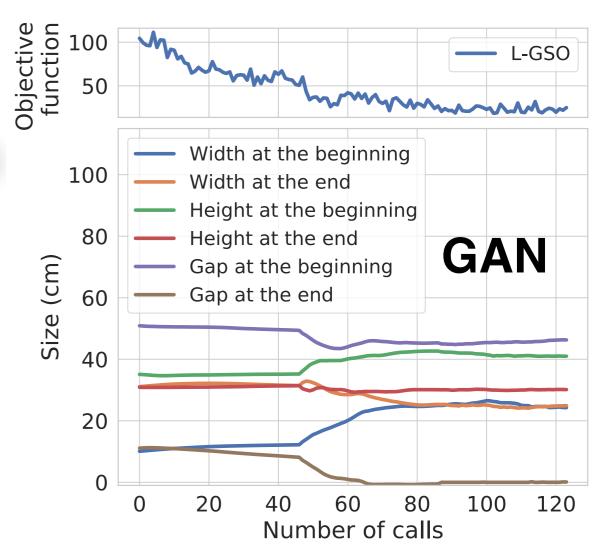


Other examples

35

Example: Optimizing the active muon shield of the SHIP experiment (proposed fixed-target @ CERN SPS)





RICH detector @ EIC

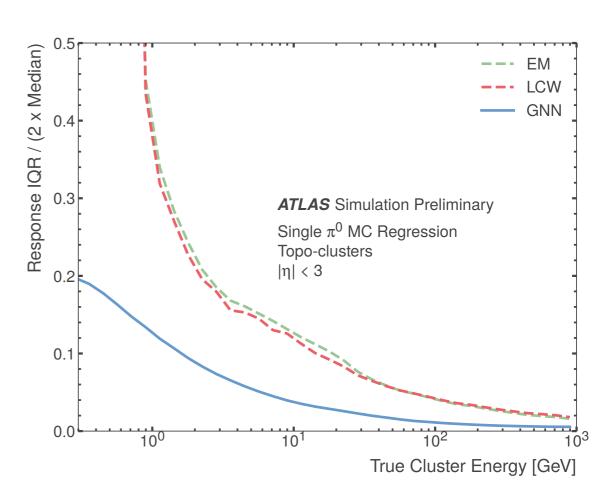
(probably you will hear more about this from Cris!)

Remark about Objective Functions

Today: can we use ML to (1) interpolate in the high-dimensional space, (2) define optimal metrics, and (3) find the best values of θ .

Remark about Objective Functions

If doing gradient-based optimization, the target also needs to be differentiable. For example, target could be resolution of some reconstructed object. This could itself be a neural network!

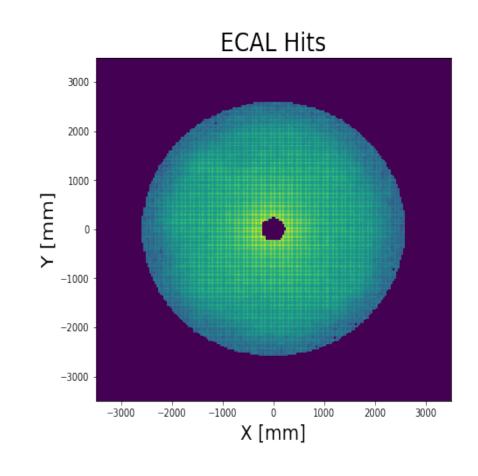


Today: can we use ML to (1) interpolate in the high-dimensional space, (2) define optimal metrics, and (3) find the best values of θ .

Outlook

The EIC detector(s) may the first large-scale detectors optimized with machine learning.

On our side, we are looking into the calorimeter system(s). I am excited to hear about other efforts as well!

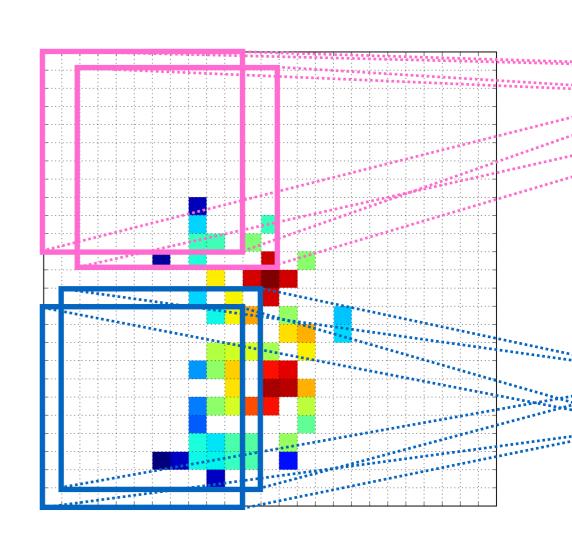


Plot from Fernando Torales Acosta

Aaron Angerami and co.

AI/ML can do more than improve data analysis!

We can use these tools to optimize our detectors - a qualitatively new application of ML!



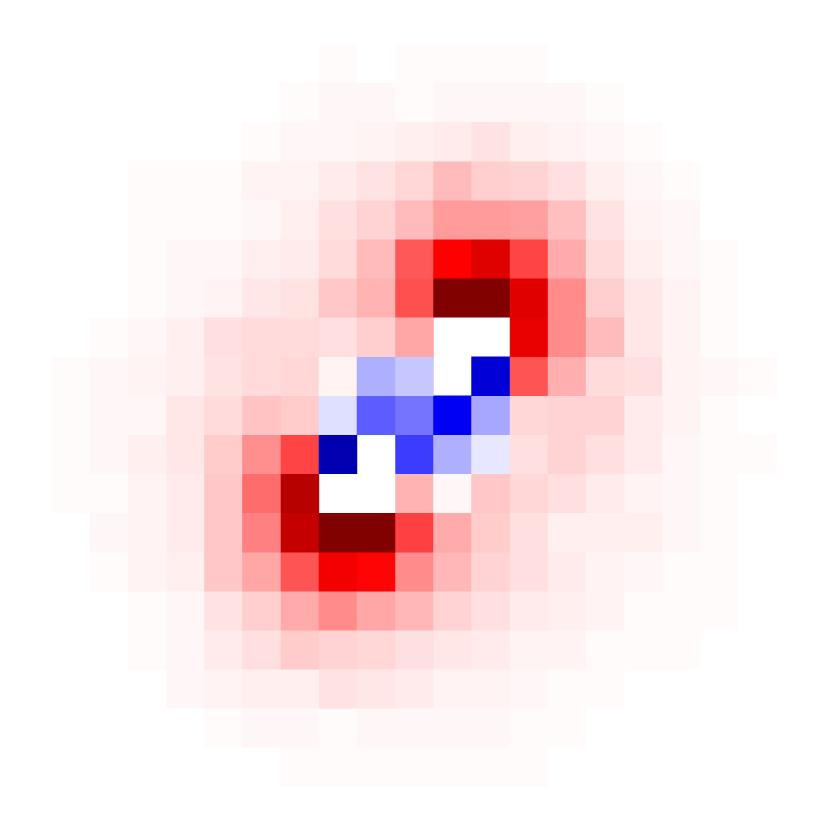
This is an exiting time to be working on this topic - let's use the best tools to get the best physics out of the EIC!

Plug for Snowmass

https://indico.fnal.gov/event/22303/

CompF3 is machine learning and their report has an entire section about detector/accelerator design and control!

Please consider commenting!



Fin.