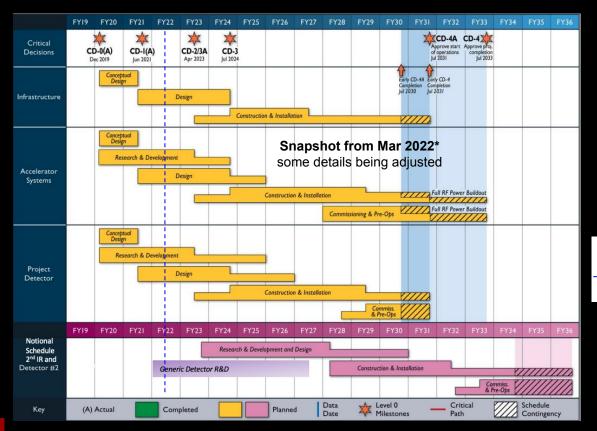


Al-assisted optimization of the EIC detector-1: Tracking System and extension to PID

Cristiano Fanelli

EIC Schedule and Milestones



Call for Collaboration Proposals for Detectors at the Electron-Ion Collider

Deadline for submission was **December 1, 2021**

Brookhaven National Laboratory (BNL) and the Thomas Jefferson National Accelerator Facility (JLab) are pleased to announce the Call for Collaboration Proposals for Detectors to be located at the Electron-Ion Collider (EIC). The EIC will have the capacity to host two interaction regions, each with a corresponding detector. It is expected that each of these two detectors would be represented by a Collaboration.

EIC Detector Proposal Advisory Panel Meeting

Process completed on March 21, 2022 **Panel Report**

6. Recommendations:

ECCE Reference Detector

The panel unanimously recommends ECCE as Detector 1. The proto-collaboration is urged to openly accept additional collaborators and quickly consolidate its design so that the Project Detector can advance to CD2/3a in a timely way.

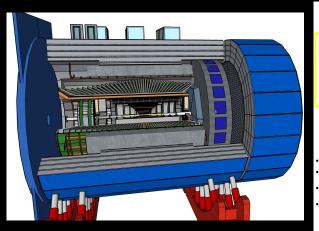
EIC DETECTOR 1 GENERAL MEETING

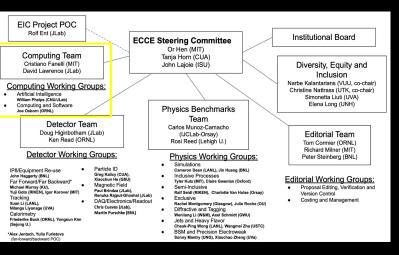
Following the DPAP process, the EIC Community is moving towards the formation of a scientific collaboration to support the realization of the EIC project detector temporarily referred to as "Detector-1"

EIC Comprehensive Chromodynamics Experiment

- Proto-collaboration that comprised scientists from 98 institutions
- Develop low-risk, cost-effective, flexible and optimized EIC detector
- Detector concept based on a 1.5 T solenoidal magnet

https://www.ecce-eic.org





AI-assisted Detector Design at EIC: the ECCE Tracker Example

Cristiano Fanelli¹, Karthik Suresh², and on behalf of the ECCE Al. Working Group Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

²University of Regina, Regina, SK S4S 0A2, Canada

December 1, 202

Abstrac

The Electron-Ion Collider (EIC) is a cutting-edge accelerator experiment proposes to study the nature of the "glue" that binds the building blocks of the visible matter.

ECCE Computing Plan

[an C. Bernauer^{1,2,3}, Cameron Dean⁴, Cristiano Fanelli⁵, Jin Huang⁶, Kolja Kauder⁶, David Lawrence⁷, Joseph D. Osborn^{6,8}, and Christoph Paus⁵

¹Department of Physics and Advantaming, Song Broad Editioning, Sansy Book, NY, USA

**ERECT RELIGIOUS MEDIC Research Center Lights, NY, USA

**Contact for Frontiers in Nicolar Science, Sonny Book University, Song Broad, NY, USA

**Laboratory for Nicolar Science, Monachinetts Institute of Televology, Contrigion,

**Laboratory for Nicolar Science, Monachinetts Institute of Televology, Contrigion,

**Laboratory for Nicolar Science, Monachinetts Institute of Televology, Contrigion,

**Laboratory for Nicolar Science, Monachinetts Institute, Norpert Nicola, USA

**Thomas [offmen: Nicolar Accordants Facility, Norpert Nicol, USA

**Thomas [offmen: Nicolar Accordants Facility, Norpert Nicolar Accordan

December 5, 2021

Executive Summary

ECCE Tracking System

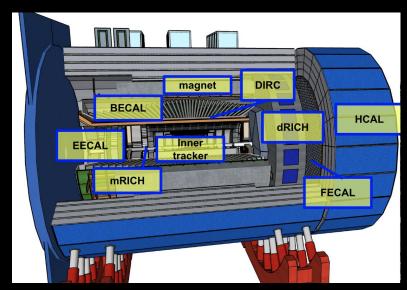
Cristiano Fanelli¹, Xuan Li², Nilanga Liyanage³, Karthik Suresh⁴, Sourav Taratdar², Reynier Cruz-Torres⁶, Cheuk Ping Wong², Cameron Dean², Jin Huang², Y. Zhao¹l, W. Li¹², E. Brian⁸, James Fast⁸, Leo Greiner⁹, Walter Sondheim², Sebastian Tapia Araya⁹, and Friederike Bock¹⁰

¹ Laboratory for Nuclear Science, Assessibuseth stetistics of Technology, Cambridge, MA, USA.
² Laboratory for Assess National Calvatories, Los Assesses, NM, USA (184).
³ Lubicratiy of Vinginia, Charletteralli, VII, USA (184).
⁴ Lubicratiy of Spogna, Region, SS, Canada (184).
⁵ Pandrivia University, Nostellic, TN, USA (184).
⁴ Laboratory for Spogna, Spogna, SS, Canada (184).
⁴ Laboratory Calvatories, Nostellic, TN, USA (184).
⁴ Laboratories (Spitta). Laboratories, (Spitta).
⁴ Laboratories (Spitta).
⁴ Laboratories (Spitta).
⁴ Laboratories, (Spitt

*Thomas Informational Accelerator Facility, Newsyort News, VA, USA "Sawa Salat University, Arms, JA, USA I'Oak Righe National Laboratory, Oak Right, TA, USA "Institute of Madern Physics, Lorenbour, China I'Rice University, Houston, TX, USA

December 5, 2021

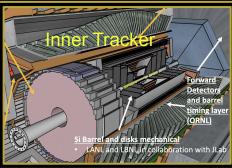
The Reference Detector



*Tracker

Combines:

- ITS-3 Si technology
- Gaseous detectors
- AC-LGAD ToFs



*Particle Identification (PID) with Cherenkov detectors

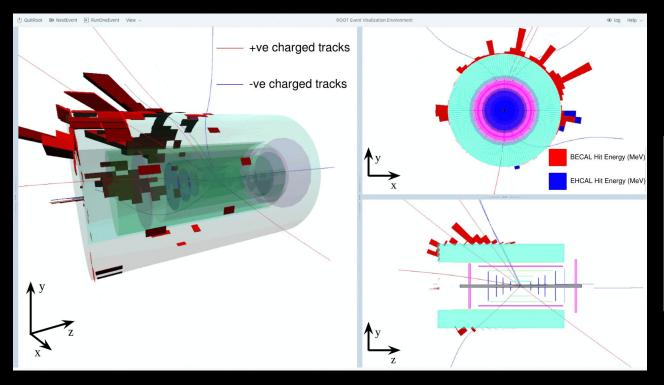
- dual radiator ring-imaging Cherenkov detector (RICH) in the hadron direction
- DIRC (detection of internally reflected Cherenkov light) in the barrel
- modular RICH in the electron direction.

Simulating these detectors is typically compute expensive, involving many photons that need to be tracked through complex surfaces.

All three rely on pattern recognition of ring images in reconstruction, and the DIRC is the one having the more complex ring patterns!

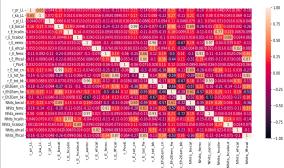
*Highlighting parts that will be discussed in this talk

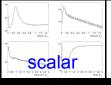
Event Display and Reconstructed Features



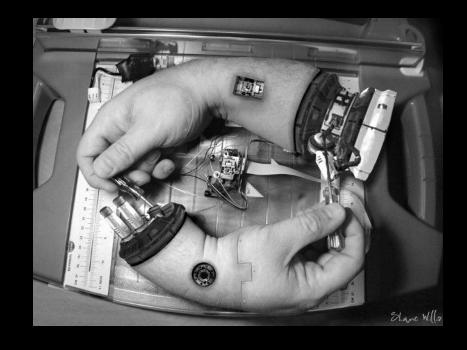
Reconstruction typically deals with relatively large feature space (low and high-level features) combining sub-detectors

For illustrative purposes, showing example of calorimetry (outer layers)





How do we design and optimize Detectors?



AI for Design

It is a relatively new but active area of research. Many applications in, e.g., industrial material, molecular and drug design.

(Drug-like, photovoltaics, polymers, dyes)

Guo, Kai, et al. Materials Horizons 8.4 (2021): 1153-1172.

Table 1 Popular ML methods	s in design of mechanical materials	
ML method	Characteristics	Example applications in mechanical materials design
Linear regression; polynomial regression	Model the linear or polynomial relationship between input and output variables	Modulus ¹¹² or strength ¹²³ prediction
Support vector machine; SVR	Separate high-dimensional data space with one or a set of hyperplanes	Strength 123 or hardness 125 prediction; structural topology optimization 159
Random forest	Construct multiple decision trees for classification or prediction	Modulus ¹¹² or toughness ¹³⁰ prediction
Feedforward neural network (FFNN); MLP	Connect nodes (neurons) with information flowing in one direction	Prediction of modulus, ^{97,112} strength, ⁹³ toughness ¹³⁰ or hardness, ⁹⁷ prediction of hyperelastic or plastic behaviors, ^{143,145} identification of collision load conditions, ¹⁴⁷ design of spinodoid metamaterials ¹⁶³
CNNs	Capture features at different hierarchical levels by calculating convolutions; operate on pixel-based or voxel-based data	Prediction of strain fields ^{104,105} or elastic properties ^{105,103} of high-contrast composites, modulus of unidirectional composites, ¹³⁵ stress fields in cantilevered structures, ¹³⁷ or yield strength of additive-manufactured metals, ¹³¹ prediction of fatigue crack propagation in polyerystalline alloys, ¹⁴⁰ prediction of crystal plasticity, ²³⁰ design of tessellate composites; ¹⁰⁷⁻¹⁰⁹ design of stretchable graphene kirigami, ²⁵⁵ structural topology optimization ¹³⁶⁻¹³⁸
Recurrent neural network (RNN); LSTM; GRU	Connect nodes (neurons) forming a directed graph with history information stored in hidden states; operate on sequential data	Prediction of fracture patterns in crystalline solids; ¹¹⁴ prediction of plastic behaviors in heterogeneous materials; ^{142,144} multi-scale modeling of porous medial ⁷³
Generative adversarial networks (GANs)	Train two opponent neural networks to generate and discriminate separately until the two networks reach equilibrium; generate new data according to the distribution of training set	Prediction of modulus distribution by solving inverse elasticity problems; ¹³ prediction of strain or stress fields in composites; ¹³ composite design; ¹⁶⁴ structural topology optimization; ^{165–167} architected materials design ¹³
Gaussian process regression (GPR); Bayesian learning	Treat parameters as random variables and calculate the probability distribution of these variables; quantify the uncertainty of model predictions	Modulus ¹²² or strength ^{123,124} prediction; design of supercompressible and recoverable metamaterials ¹¹⁰
Active learning	Interacts with a user on the fly for labeling new data; augment training data with post-hoc experiments or simulations	Strength prediction ¹²⁴
Genetic or evolutionary algorithms	Mimic evolutionary rules for optimizing objective function	Hardness prediction; ¹²⁶ designs of active materials; ^{160,161} design of modular metamaterials ¹⁶²
Reinforcement learning	Maximize cumulative awards with agents reacting to the environments.	Deriving microstructure-based traction-separation laws 174
Graph neural networks (GNNs)	Operate on non-Euclidean data structures; applicable tasks include link prediction, node classification and graph classification	Hardness prediction; 127 architected materials design 168

Functional space Direct Inverse Inverse Desired properties (redox potential, solubility, toxicity) Optimization. Experiment or High-throughput virtual evolutionary strategies, simulation (Schrödinger screening (e.g., with 3 generative models (VAE, equation) filtering stages) GAN, RL) Chemical space

Z. Zhou et al., Scientific Reports, vol. 9, no. 1, pp. 1–10, 2019

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts from desired properties and ends in chemical space, unlike the direct approach that leads from chemical space to the properties.

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018): 360-365.

<u>Optimization of Detectors Design</u>

• When it comes to designing detectors with AI this is a frontier topic with few examples in the literature.

- S. Shirobokov, V. Belavin, M. Kagan, A. Ustyuzhanin, and A.G. Baydin. Black-Box Optimization with Local Generative Surrogates, 2020. arXiv: 2002.04632.
- T. Dorigo. Geometry optimization of a muon-electron scattering detector. Physics Open, 4:100022, 2020.
- F. Ratnikov. Using machine learning to speed up and improve calorimeter R&D. Journal of Instrumentation, 15(05):C05032, 2020.
- E. Cisbani, CF, et al. Al-optimized detector design for the future Electron Ion Collider: the dual-radiator RICH case. JINST 15(05):P05009, 2020.
- S. Meyer et al. Optimization and performance study of a proton CT system for pre-clinical small animal imaging. Phys. Med. Biol., 65(15):155008, 2020. doi:10.1088/1361-6560/ab8afc.

CF. et al. (ECCE), Al-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider arXiv:2205.09185, 2022

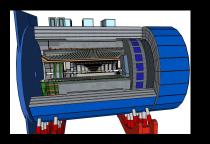
Full Optimization of Detectors/Accelerators

- When it comes to designing detectors and accelerators with AI this is a frontier topic with few examples in the literature.
 - What follows uses "detector" as example but applies to both detector and accelerator and can be extended
 to many other applications
- For years the full detector design has been studied after the subsystem prototypes are ready (taking into account the phase constraints from the full detector or outer layers).
- We need to use advanced simulations which are computationally expensive (Geant)...
- Modern complex design: many parameters (and multiple objective functions) curse of dimensionality [1].
- Al-assisted strategies can help designing more efficiently (in terms of performance and resources needed).
 - Need establishing a full body of instructions [2].
 - The choice of a suitable algorithm is a challenge itself (no free lunch theorem [3]) and always requires some degree of customization.

^{2]} CF et al. *JINST* 15.05 (2020): P05009.

^[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67–82

The Typical Workflow



- Al can assist in designing more efficiently detectors (performance, costs).
- It helps steering the design (and eventually fine-tune it).
- It can capture hidden correlations among design parameters.

gathers observations and suggests new points customization **Design parameters** Detector Simulation

A.I.

Physics Events

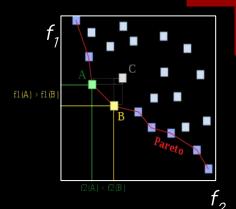
compute intensive (Geant4)

Forward simulations needed to simulate quantum phenomena (interaction of particles with matter)

Analysis of
High-level
reconstruction of
events

Multi-Objective Optimization

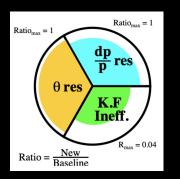
- The problem becomes challenging when the objectives are of conflict to each other, that is, the optimal solution of an objective function is different from that of the other.
- In solving such problems, with or without constraints, they give rise to a trade-off optimal solutions, popularly known as Pareto-optimal solutions.



- ry
- Due to the multiplicity in solutions, these problems were proposed to be solved suitably using evolutionary algorithms which use a population approach in its search procedure.
- MO-based solutions are helping to reveal important hidden knowledge about a problem a matter which is difficult to achieve otherwise
- During the proposal we used both evolutionary (1) and bayesian approaches (2). I will describe now (1).

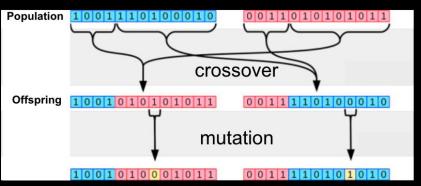
The ECCE Inner Tracker Design Optimization considers simultaneously:

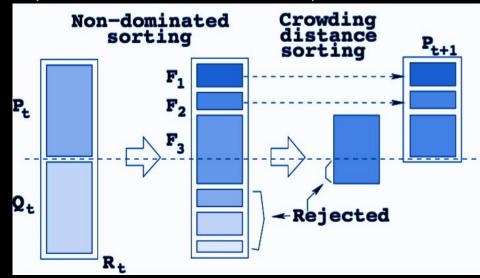
- momentum resolution
- angular resolution
- Kalman filter efficiency
- (pointing resolution)
- Mechanical constraints



Popular AI-Strategies (in a nutshell)

Evolutionary



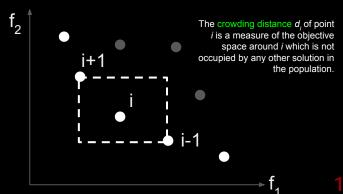


This is one of the most popular approach, characterized by:

- Use of an elitist principle
- Explicit diversity preserving mechanism
- Emphasis in non-dominated solutions

The population R_t is classified in non-dominated fronts.

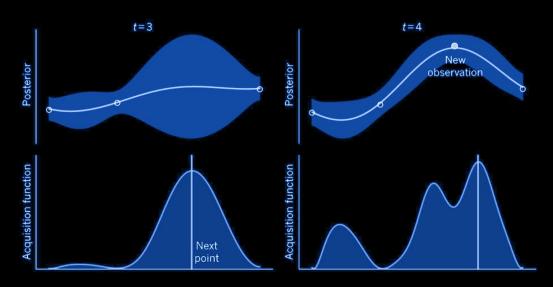
Not all fronts can be accommodated in the N slots of available in the new population P_{t+1}. We use crowding distance to keep those points in the last front that contribute to the highest diversity.



Popular AI-Strategies (in a nutshell)

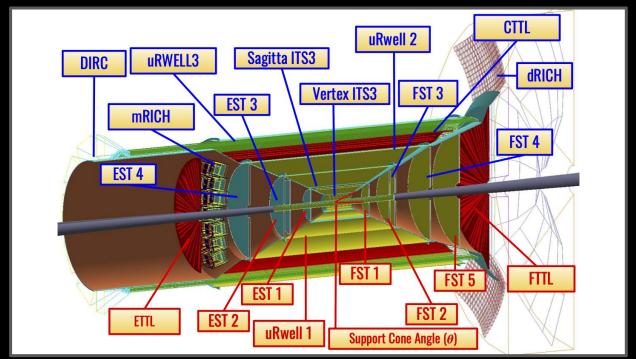
Bayesian

- BO is a sequential strategy developed for global optimization.
- After gathering evaluations we builds a posterior distribution used to construct an acquisition function.
- This cheap function determines what is **next query point**.

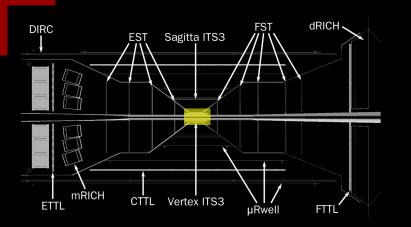


- 1. Select a Sample by Optimizing the Acquisition Function.
- 2. Evaluate the Sample With the Objective Function.
- 3. Update the Data and, in turn, the Surrogate Function.
- 4. Go To 1.

<u>AI-Assisted Optimization of the ECCE Tracking</u> <u>System at the Electron Ion Collider</u>



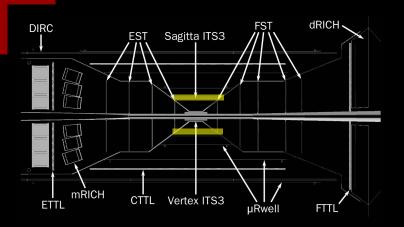
https://ai4eicdetopt.pythonanywhere.com





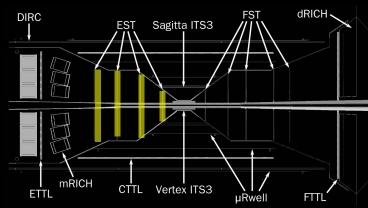
Vertex Si Barrel

			Refe	erence	Ongoi	ng R&D
Barrel	X/X0 [%]	Pitch [um]	Radii [cm]	Length [cm]	Radii [cm]	Length [cm]
Layer 1	0.05	10	3.3	27	3.3	27
Layer 2	0.05	10	4.35	27	4.35	27
Layer 3	0.05	10	5.4	27	5.4	27



Sagitta Si Barrel

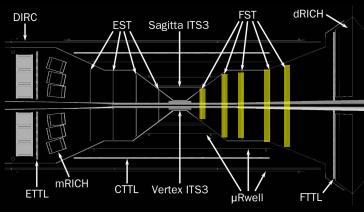
			Refe	rence	Ongoir	ng R&D
Barrel	X/X0 [%]	Pitch [um]	Radii [cm]	Length [cm]	Radii [cm]	Length [cm]
Layer 1	0.05	10	21	54	14.0	54
Layer 2	0.05	10	22.68	54	15.5	54



Additional thickness for services, cooling is given <u>here</u>

EST Disks

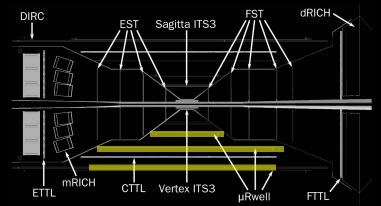
	µкwell	FIIL	Reference			Ongoing R&D		
Disk	Si Thickness[um]	Pitch[um]	RMin [cm]	RMax[cm]	ZPos[cm]	RMin [cm]	RMax [cm]	ZPos[cm]
EST 4	35	10	5.5	41.5	-106	6.0	48.0	-107.4
EST 3	35	10	4.5	40.5	-79	4.8	35.25	-80.05
EST 2	35	10	3.5	36.5	-52	3.3	27.3	-58.29
EST 1	35	10	3.5	18.5	-25	3.3	15.3	-33.2



Additional thickness for services, cooling is given <u>here</u>

FST Disks

ETTL	CTTL Vertex ITS3 \ γRν	vell FTTL		Reference		Ongoing R&D		
Disk	Si Thickness [um]	Pitch [um]	RMin [cm]	RMax [cm]	ZPos [cm]	RMin [cm]	RMax [cm]	ZPos [cm]
FST 5	35	10	7.5	43.5	125	8.2	62.2	144
FST 4	35	10	5.5	41.5	106	5.8	49.8	115
FST 3	35	10	4.5	40.5	73	4.8	34.8	79.85
FST 2	35	10	3.5	36.5	49	3.5	27.5	58.29
FST 1	35	10	3.5	18.5	25	3.5	15.5	33.2



μ**Rwell Cylinder**

Additional thickness for services, cooling is given here

			Refe	rence	Ongoing R&D		
Barrel	Res [um]	Thickness [cm]	Radii [cm]	Length [cm]	Radii [cm]	Length [cm]	
Layer 1	55	0.03	33.14	80	33.14	140	
Layer 2	55	0.03	51.00	212	51.00	230	
Layer 3	55	0.03	77.02	342	77.02	342	

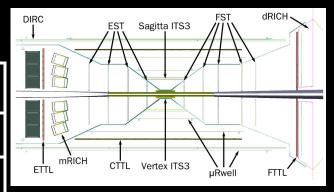


TOF Detectors

			Reference			On	going R	&D
TOF TTL	Si Thickness [um]	Pitch [um]	RMin [cm]	RMax [cm]	L [cm]	RMin [cm]	RMax [cm]	L [cm]
CTTL	85	30	64	-	140	64	-	140
ETTL	85	30	8	64	-155.5	8	64	169
FTTL	85	30	7	87	182	7	87	182

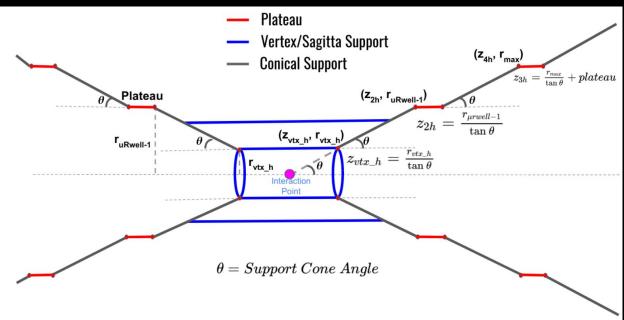
EIC Detector Tracker

Sub Detector System	No Of Layers	Technology	Pitch/res [μm]	Thickness [X/X0]	Description
Vertex Barrel	3	MAPS-ITS3	10	0.05	Monolithic Active Pixel Sensor; EIC R&D <u>eRD111</u> . High precision tracking.
Sagitta Barrel	2	MAPS-ITS3	10	0.05	Monolithic Active Pixel Sensor; EIC R&D <u>eRD11</u> . High precision tracking.
Outer Barrel	3	μRwell	55	0.2	μRwell is a gaseous based tracker. EIC R&D <u>ERD6</u> . Low Cost tracking solution
CTTL (TOF)	1	AC-LGAD	30	~0.1	Low Gain Avalanche Detectors (ACLGAD): EIC R&D <u>ERD112</u> . High precision tracking and Timing.
EST	4	MAPS-ITS3	10	0.3	Monolithic Active Pixel Sensor; EIC R&D <u>eRD11</u> . High precision tracking.
FST	5	MAPS-ITS3	10	0.3	Monolithic Active Pixel Sensor; EIC R&D <u>eRD111</u> . High precision tracking.
ETTL	1	AC-LGAD	30	~0.1	Low Gain Avalanche Detectors (ACLGAD): EIC R&D <u>ERD112</u> . High precision tracking and timing
FTTL	1	AC-LGAD	30	~0.1	Low Gain Avalanche Detectors (ACLGAD): EIC R&D <u>ERD112</u> . High precision tracking and timing



ECCE design (non-projective)						
Design Parameter	Range					
μ RWELL 1 (Inner) (r) Radius	[17.0, 51.0 cm]					
μ RWELL 2 (Inner) (r) Radius	[18.0, 51.0 cm]					
EST 4 z position	[-110.0, -50.0 cm]					
EST 3 z position	[-110.0, -40.0 cm]					
EST 2 z position	[-80.0, -30.0 cm]					
EST 1 z position	[-50.0, -20.0 cm]					
FST 1 z position	[20.0, 50.0 cm]					
FST 2 z position	[30.0, 80.0 cm]					
FST 3 z position	[40.0, 110.0 cm]					
FST 4 z position	[50.0, 125.0 cm]					
FST 5 z position	[60.0, 125.0 cm]					
ECCE ongoing R&D	(projective)					
Design Parameter	Range					
Angle (Support Cone)	[25.0°, 30.0°]					
μRWELL 1 (Inner) Radius	[25.0, 45.0 cm]					
ETTL z position	[-171.0, -161.0 cm]					
EST 2 z position	[45, 100 cm]					
EST 1 z position	[35, 50 cm]					
FST 1 z position	[35, 50 cm]					
FST 2 z position	[45, 100 cm]					
FST 5 z position	[100, 150 cm]					
FTTL z postion	[156, 183 cm]					

Parametrization of the support structure



Parametrization of disks radii and TTL

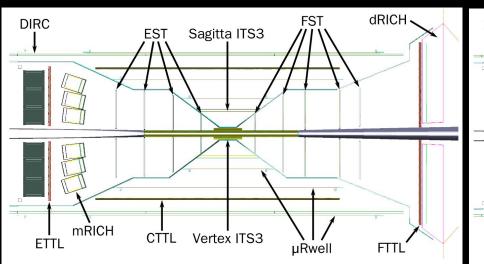
Implementation of Geometric Constraints

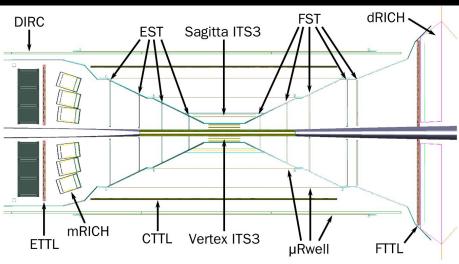
RMax and RMin of the disks are then calculated based on the support structure.

Sagitta Length fixed and Radius changed based on the cone angle.

Parametrization underlies the Al-assisted design and can explore non-projective as well as projective

Reference VS Projective (R&D)





Parametrization underlies the Al-assisted design and can explore non-projective as well as projective

Reference VS Projective (R&D)

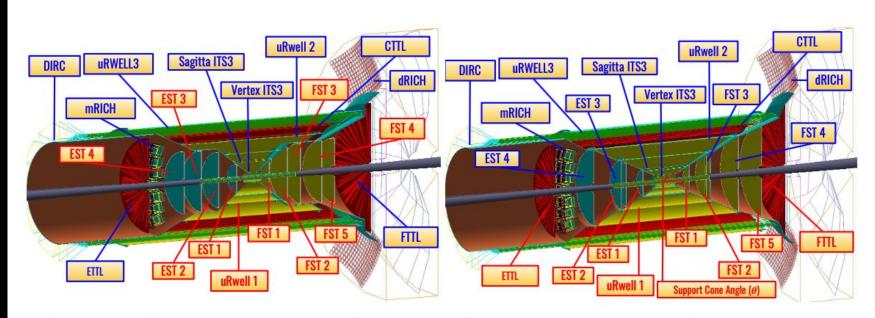


Figure 5: Tracking and PID system in the non-projective (left) and the ongoing R&D projective (right) designs: the two figures show the different geometry and parametrization of the ECCE non-projective design (left) and of the ongoing R&D projective design to optimize the support structure (right). Labels in red indicate the sub-detector systems that were optimized, while the labels in blue are the sub-detector systems that were kept fixed due to geometrical constraint. The non-projective geometry (left) is a result of an optimization on the inner tracker layers (labeled in red) while keeping the support structure fixed, The angle made by the support structure to the IP is fixed at about 36.5°. The projective geometry (right) is the result of an ongoing project R&D to reduce the impact of readout and services on tracking resolution.

"Soft"/"Hard" Constraints

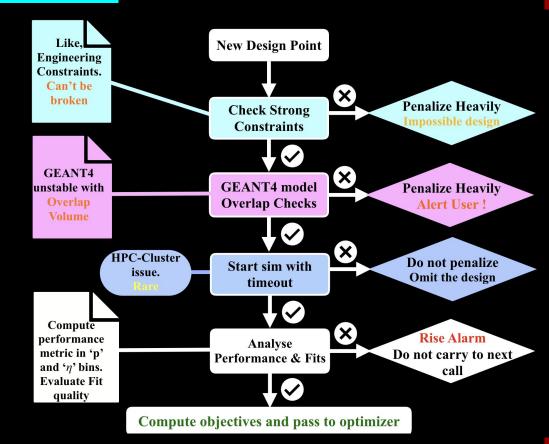
$$min \mathbf{f_m}(\mathbf{x}) \qquad m = 1, \dots, M$$

$$s.t. \ \mathbf{g_j}(\mathbf{x}) \le 0, \qquad j = 1, \dots, J$$

$$\mathbf{h_k}(\mathbf{x}) = 0, \qquad k = 1, \dots, K$$

$$x_i^L \le x_i \le x_i^U, \qquad i = 1, \dots, N$$

sub-detector	constraint	description
EST/FST disks	$min iggl\{ \sum_{i}^{disks} \left rac{R_{out}^{l} - R_{in}^{l}}{d} - \left\lfloor rac{R_{out}^{l} - R_{in}^{l}}{d} ight floor ight\}$	soft constraint: sum of residuals in sensor coverage for disks; sensor dimensions: d = 17.8 (30.0) mm
EST/FST disks	$z_{n+1} - z_n >= 10.0 \text{ cm}$	strong constraint: minimum distance between 2 consecutive disks
sagitta layers	$min\left\{\left rac{2\pi r_{sagitta}}{w} - \left rac{2\pi r_{sagitta}}{w} ight ight\}$	soft constraint : residual in sensor coverage for every layer; sensor strip width: $w = 17.8 \text{ mm}$
μ RWELL	$r_{n+1} - r_n >= 5.0 \text{ cm}$	strong constraint: minimum distance between µRwell barrel layers

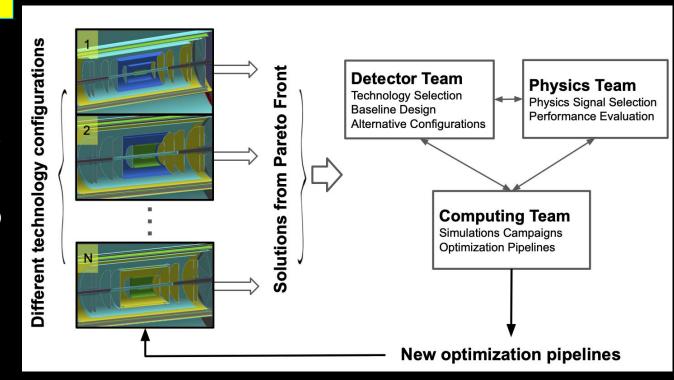


<u>Integration during the EIC Detector Proposal</u>

Al-"Optimization" does not necessarily mean "fine-tuning"

- We want to use these algorithms to: (1) steer the design and suggest parameters that a "manual"/brute-force optimization will likely miss to identify; (2) further optimize some particular detector technology (see d-RICH paper, e.g., optics properties)
- Al allows to capture hidden correlations among the design parameters.
- All "steps" (physics, detector) involved in the Al optimization, strong interplay between working groups

Light/smart optimization pipelines ran during the "explorative" phase of the detector proposal



<u>Implementation</u>

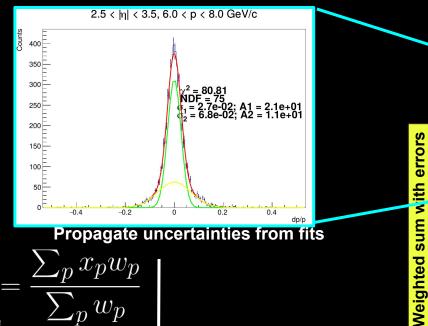
- Objective functions Average of Weighted Averages (n_obj ≥ 3)
 - Momentum resolution dp/p
 - Theta resolution $d\theta \theta$
 - Projected $d\theta/\theta$ at PID location.
 - Kalman Filtering inefficiency
 (improving the tracking reconstruction ability of the algorithm)
- Validation of the solutions
 - \circ Validate by comparing optimal vs baseline d φ resolution, vertex resolution and reconstruction efficiency

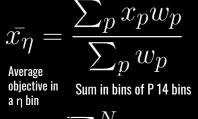
Weighted sum with errors

Weighted

<u>Implementation</u>

Weighted sum with errors





$$\bar{x} = \frac{\sum_{\eta}^{N_{\eta}} \bar{x_{\eta}}}{N_{\eta}}$$

$$R(f) = \frac{1}{N_{\eta}} \sum_{\eta} \left(\frac{\sum_{p} w_{p,\eta} \cdot R(f)_{p,\eta}}{\sum_{p} w_{p,\eta}} \right)$$

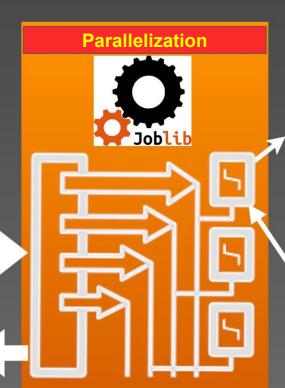
errors

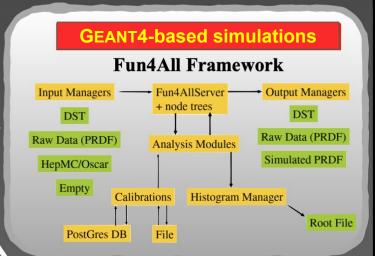
pym∞

AI Suggested Design points

Evaluation of the Design points

Sort solutions
Approximate Pareto front
Suggest next set of design points

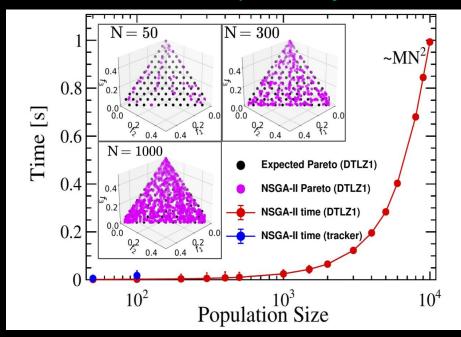




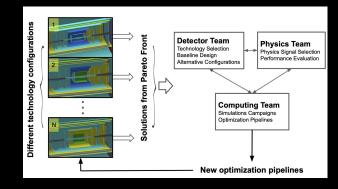
Compute Objectives and metrics

Computational Resources

time taken by GA + sorting



 For the complexity of the problem and the chosen population size, the computing time is dominated by simulations and not by the Al part

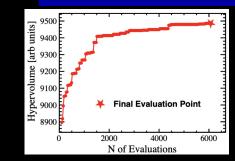


description	symbol	value
population size	N	100
# objectives	M	3
offspring	0	30
design size	D	11 (9)
# calls (tot. budget)	_ '	200
# cores	_	same as offspring
# charged π tracks	N _{trk}	120k
# bins in η	N_{η}	5
# bins in p	N_p	10

- Used a test problem DTLZ1
- Verified scaling following MN² and convergence to true front
- ~1s/call with 10⁴ size!
- Smart pipelines of 11 variables and 3 objectives needs ~ 10000 evaluations to converge ~10k CPUhours / pipeline

"Navigate" Pareto Front

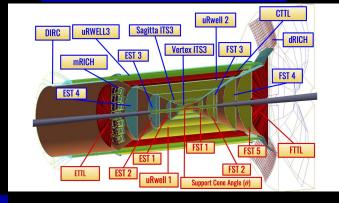
Can take a snapshot any time during evaluation



2 Updated Pareto Front at time t

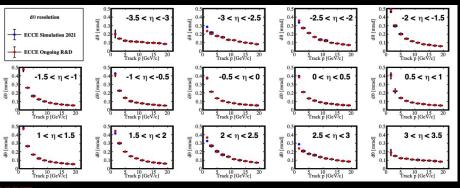


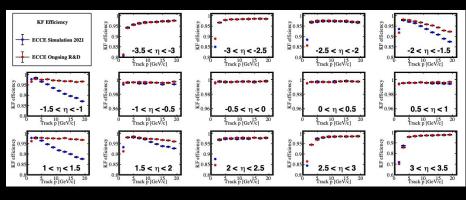
At each point in the Pareto front corresponds a design



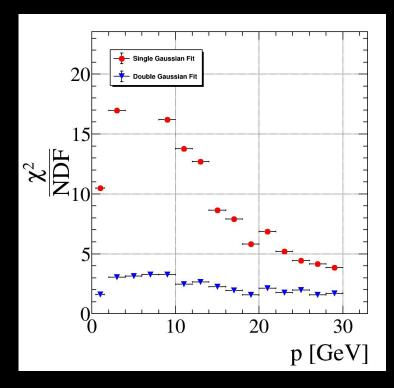
4

Analysis of Objectives (momentum resolution, angular resolution, KF efficiency)





Single VS Double Gaussian



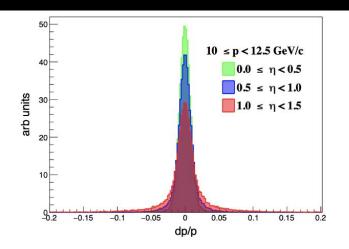
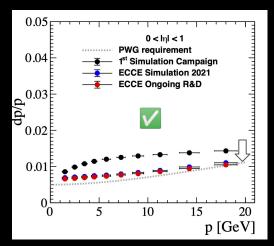
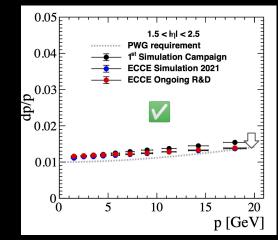


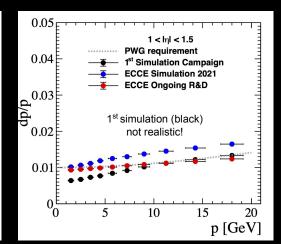
Figure 6: **Fit strategy:** a double-Gaussian fit function is utilized to extract the resolutions. Such a fit function provided good reduced χ^2 and more stable extractions compared to single-Gaussian fits. The resolution is obtained as an average of the two σ 's weighted by the relative areas of the two Gaussians according to Eq. [3]. The figure represents the results corresponding to a particular bin in η and p.

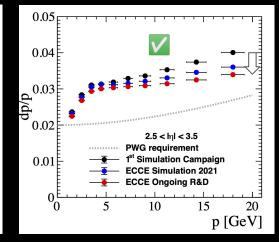
Evolution

- Black points represent the first simulation campaign, and a preliminary detector concept in phase-I optimization which did not have a developed support structure;
- Blue points represent the fully developed simulations for the final ECCE detector proposal concept; red points the ongoing R&D for the optimization of the support structure.
- Compared to black, there is an improvement in performance in all η bins with the exception of the transition region, an artifact that depends on the fact that black points do not include a realistic simulation of the material budget in the transition region!
- In the transition region, it can be also appreciated the improvement provided by the projective design



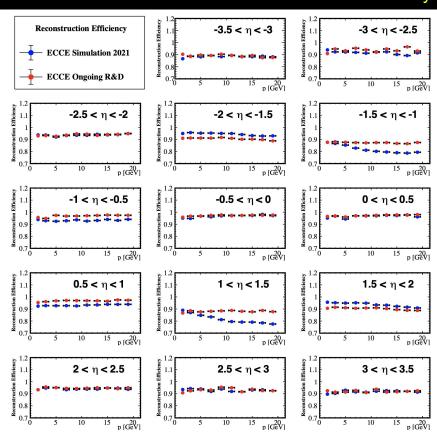






Validation

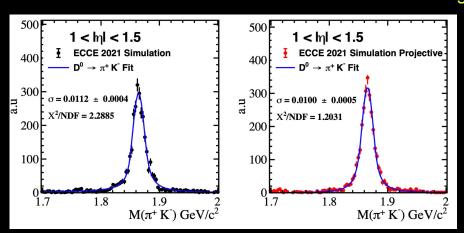
Reconstruction Efficiency



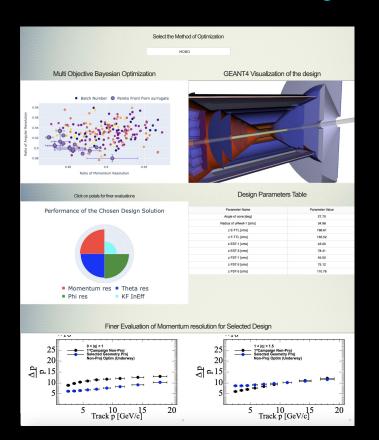
Performance evaluated after optimization process (both designs) using standard analysis procedures

Notice red points are related to an ongoing project R&D with a projective support structure for the ECCE tracker.

D0 invariant mass from semi-inclusive deep inelastic scattering



<u>Interactive Navigation of Pareto front</u>



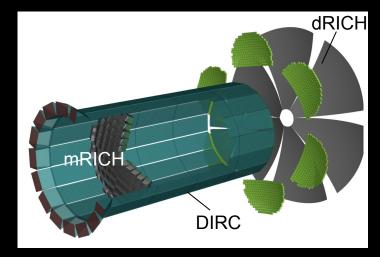
- Visualization of results from approximated Pareto front
- Exploration in a multiple objective space
- Facilitate study/comparison of trade-off solutions
- Here MOBO is used using BoTorch/Ax (benefit from strong community support — Facebook)

<u>Plans</u>

- This work was accomplished during the detector proposal and provided valuable insights in a multi-dimensional design space with multiple objective characterizing the detector performance (e.g., KF efficiency, momentum and angular resolution)
- This combined with other aspects like risk mitigation and costs reduction helped designing the ECCE reference detector. This reference is the new baseline for a new optimization phase as we are also moving towards the collaboration formation
- Consolidation of technology choice and optimization of design will be supported by:
 - Always more realistic effects integrated in the simulations, e.g., beam background
 - Integration of reconstruction algorithms and utilization without truth information (e.g. track finding for tracking) — N.b., reconstruction should be "flexible" against changes in design
 - Explore physics-driven optimization include physics observables/full analysis as objectives
 - Extension of the design optimization to a larger system of sub-detectors, e.g., tracker + PID
 - Previous studies of dRICH show how this detector critical for PID in the hadronic endcap can benefit from Al-assisted design

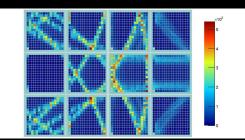
Particle Identification with Cherenkov

		electrons/p	hotons	π/К	/p
eta	Nomenclature	PID	Min E Photon	P-range [GeV/c]	Separation
-3.5 to -2.0	Backward	π suppression up to 1:1E-4	20 MeV	≤ 10 GeV/c	
-2.0 to -1.0	Backward	π suppression up to 1:1E-3 - 1:1E-2	50 MeV		≤ 3σ
-1.0 to 1.0	Barrel	π suppression up to 1:1E-2	100 MeV	≤6 GeV/c	
1.0 to 3.5	Forward	3σ e/π up to 15 GeV/c	50 MeV	≤ 50 GeV/c	



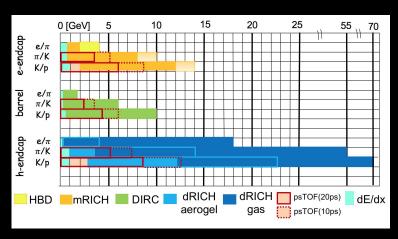
Cherenkov detectors form the backbone of PID at EIC

- Currently, all EIC detector designs use a dual radiator ring-imaging Cherenkov detector (RICH) in the hadron direction, a DIRC (detection of internally reflected Cherenkov light) in the barrel, and a modular RICH in the electron direction.
- <u>Simulating these detectors is typically compute expensive</u>, involving many photons that need to be tracked through complex surfaces.
- All three rely on pattern recognition of ring images in reconstruction, and <u>the DIRC is</u> the one having the more complex ring patterns!



dRICH: ante-proposal

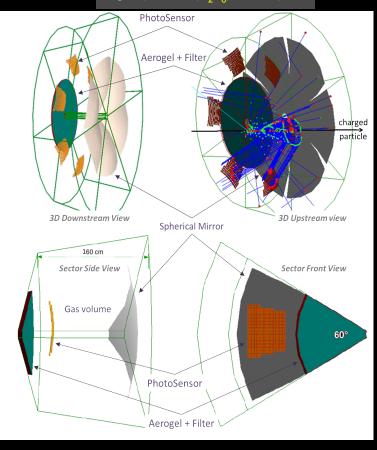
E. Cisbani, A. Del Dotto, <u>CF*</u>, M. Williams et al. "Al-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH case." *Journal of Instrumentation* 15.05 (2020): P05009.



- Continuous momentum coverage.
- Simple geometry and optics, cost effective.
- Legacy design from INFN, see <u>EICUG2017</u>
 - 6 Identical open sectors (petals)
 - Optical sensor elements: 8500 cm²/sector, 3 mm pixel
 - Large focusing mirror

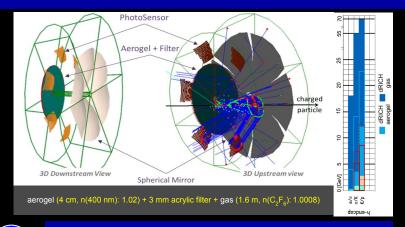
aerogel (4 cm, n(400 nm): 1.02) + 3 mm acrylic filter

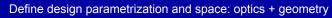
+ gas (1.6 m, n(C₂F₆): 1.0008)



dRICH: ante-proposal

- Two radiators with different refractive indices for continuous momentum coverage.
- Simulation of detector and processes is compute-intensive
- Legacy design from INFN (<u>EICUG2017</u>).

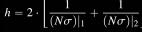




parameter	description	range [units]	tolerance [units]
R	mirror radius	[290,300] [cm]	100 [μm]
pos r	radial position of mirror center	[125,140] [cm]	100 [μm]
pos 1	longitudinal position of mirror center	[-305,-295] [cm]	100 [μm]
tiles x	shift along x of tiles center	[-5,5] [cm]	100 [μm]
tiles y	shift along y of tiles center	[-5,5] [cm]	100 [μm]
tiles z	shift along z of tiles center	[-105,-95] [cm]	100 [μm]
n _{aerogel}	aerogel refractive index	[1.015,1.030]	0.2%
taerogel	aerogel thickness	[3.0,6.0] [cm]	1 [mm]

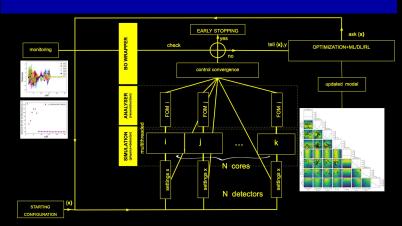
Come up with a smart objective; study / characterize properties (noise, stats needed etc): simulation + reconstruction

$$N\sigma = rac{|\langle heta_K
angle - \langle heta_\pi
angle||\sqrt{N_\gamma}}{\sigma_{ heta}^{1p.e.}}$$

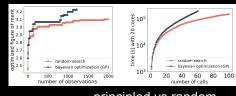


3

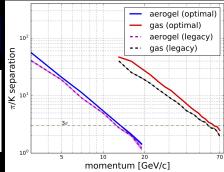
Optimization framework (embed convergence criteria)



Analysis + Validation

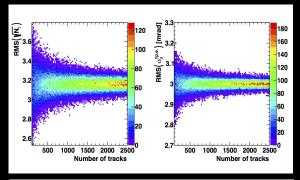


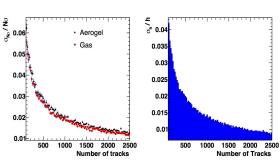
principled vs random



dRICH: ante-proposal

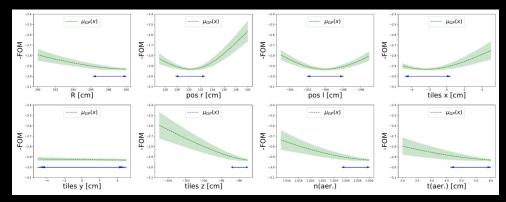
 Dedicated studies to characterize the noise as this is an optimization of a noisy function

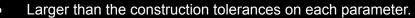




 Ranges depend mainly on mechanical constraints and optics requirements. These requirements can change in the next future based on inputs from prototyping.

parameter	description	range [units]	tolerance [units]
R	mirror radius	[290,300] [cm]	100 [μm]
pos r	radial position of mirror center	[125,140] [cm]	100 [μm]
pos 1	longitudinal position of mirror center	[-305,-295] [cm]	100 [μm]
tiles x	shift along x of tiles center	[-5,5] [cm]	100 [μm]
tiles y	shift along y of tiles center	[-5,5] [cm]	100 [μm]
tiles z	shift along z of tiles center	[-105,-95] [cm]	100 [μm]
naerogel	aerogel refractive index	[1.015,1.030]	0.2%
taerogel	aerogel thickness	[3.0,6.0] [cm]	1 [mm]





<u>EICUG AI WG (AI4EIC)</u>

First Workshop on September 2021 at CFNS

Next workshop on October 10-14 2022 at W&M

<u>Workshops</u>

AI FOR THE ELECTRON ION COLLIDER - EVENTS

AI4EIC - October 10-14, 2022

2nd General Workshop on Artificial Intelligence for the Electron Ion Collider Venue: William and Mary

Contacts:

support@eic.ai

AI4EIC-exp - September 7-10, 2021

Experimental Applications of Artificial Intelligence for the Electron Ion Collider

Venue: Center for Frontier in Nuclear Science (CFNS) - held virtually
Organizers: A. Boehnlein, J. Bernauer, C. Fanelli, T. Horn
Support: Center for Frontier in Nuclear Science (CFNS)

Contact:

support@eic.ai

https://eic.ai

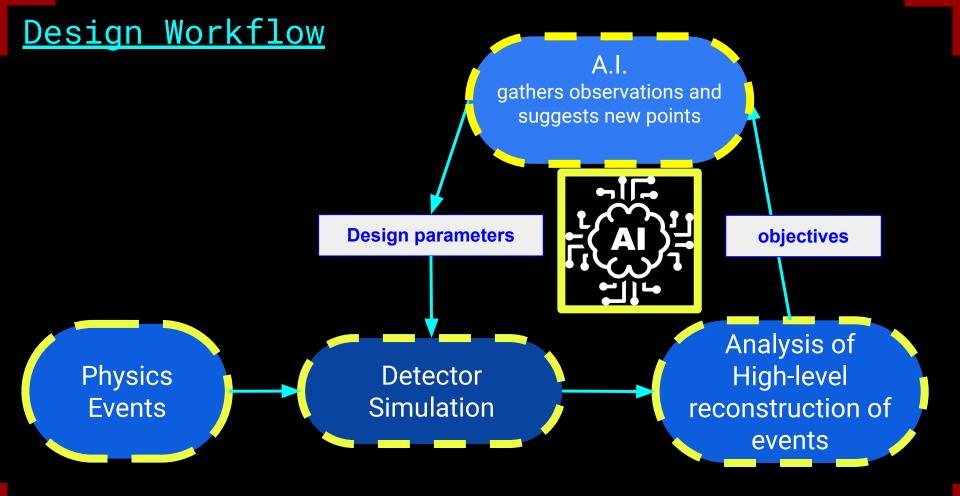
Meetings

Al4EIC Meeting on Detector Design: https://indico.bnl.gov/event/16328/

July 20, 9-11am ET

Conclusions

- Al can assist the design and R&D of complex experimental systems by providing more efficient design (considering multiple objectives) utilizing effectively the computing resources needed to achieve that.
- EIC can be one of the first experiments to be designed with the support of AI and the ECCE reference detector has been already designed taking advantage of a multi-objective optimization approach and a complex parametrization of its design which takes into account constraints.
- This workflow can be further utilized to optimize the reference detector; we anticipate roughly
 1M CPU-core hours/year for these studies which will be extended to include
 - More realistic effects in the simulation and reconstruction techniques
 - A larger system of sub-detectors to include, e.g, detectors like the dRICH, in addition to the tracker system
- Design optimization pipelines of increased complexity can take advantage of distributed computing.



Speed-up

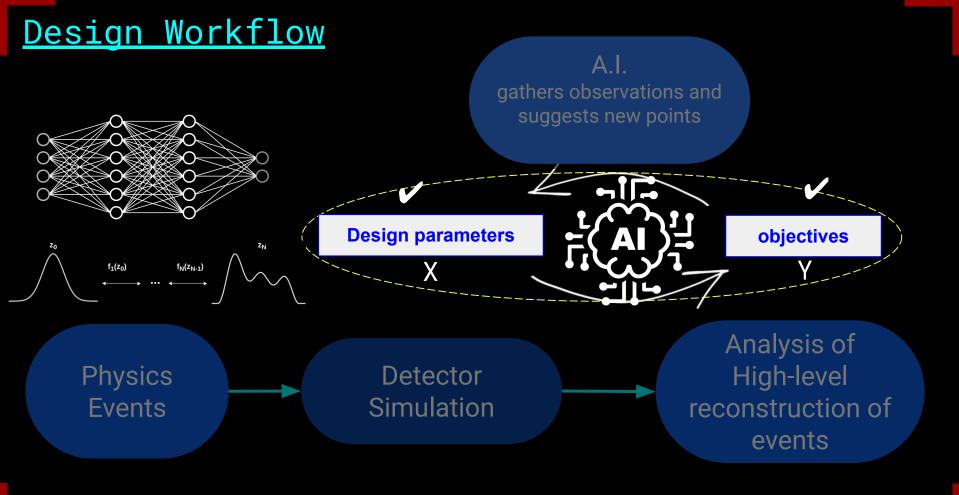
- In general speed-up is reached by:
 - Hardware-based solutions to accelerate traditional algorithms
 - Hybrid ML/traditional techniques
 - End-to-end ML methods
- Of course the overall performance improvement gained by optimizing a single part of a system is limited by the fraction of time that the improved part is actually used (Amdhal's law)

$$\frac{1}{(1-P)+\frac{P}{S}}$$

P: fraction of execution time that the part benefiting from improved resources originally occupied

s: speed-up of the part benefiting

What follows will show some ML/DL example and is not meant to be exhaustive —
 argument for another talk; see P. Harris' lectures



Projective vs non-projective

