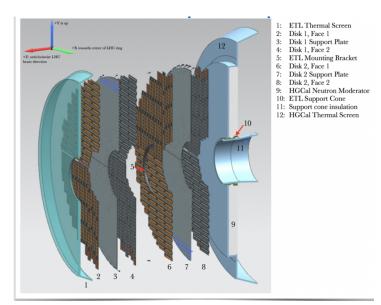


Timing ASIC for LGAD sensors based on a Constant Fraction Discriminator – FCFD0


Artur Apresyan
eRD112/LGAD Consortium Meeting
Jun 29, 2022

Motivation

- The 4D-trackers will play a key role at the future machines
 - Reduce backgrounds, track reconstruction, PID, triggering all will need precision timing information, in addition to the precision position
- Next generation detectors will be more sophisticated and replace tracker
 - Development of the technologies need to start now

Measurement	Technical requirement	
	Granularity: 25x50 μm² pixels	
Tracking for e⁺e-	5 μm single hit resolution	
	Per track resolution of 10 ps	
	Generally the same as e ⁺ e ⁻	
Tracking for 100 TeV pp	Radiation toleran up to 8x10 ¹⁷ n/cm ²	
	Per track resolution of 5 ps	

Technical requirements for future trackers: from DOE's HEP BRN

CMS endcap timing detector

FCFDv0: Fermilab CFD chip v0

Goals:

- Develop a robust fast-timing measurement technique for fast detectors
- 30 ps time resolution or better
- Easy to use and stable: no corrections, or repeated calibrations and threshold adjustments
- Dynamic range ~ 5 50 fC
- Very low dead-time after a hit (< 25 ns)

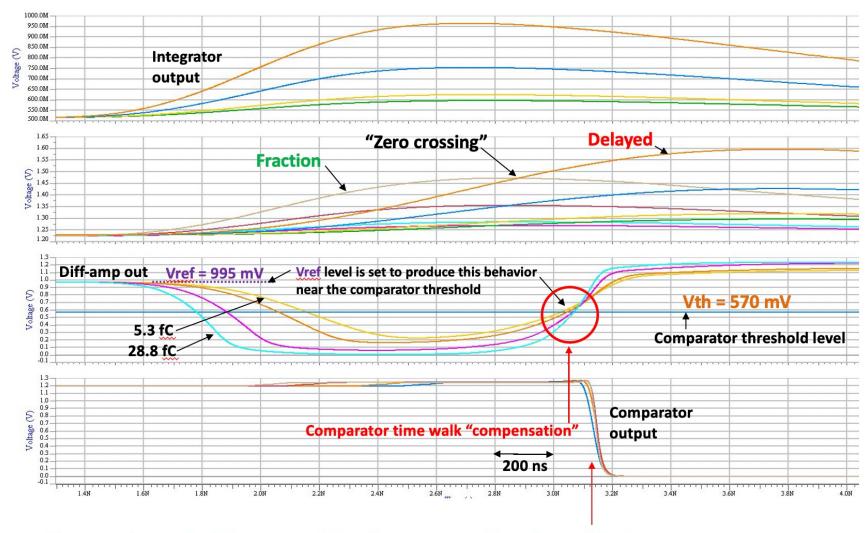
Our approach:

- Studied both LE and CFD approaches for AC-LGAD: "A simulation model of frontend electronics for high-precision timing measurements with low-gain avalanche detectors", NIM A 940 (2019), pp 119-124
- Adapt the Constant Fraction Discriminator (CFD) principle for a pixel when paired with a TDC, one time measurement gives the final answer
- Modify the classical CFD approach to eliminate the need for pixel-by-pixel trimming or compensation
- Tailor the first design to LGAD requirements (serve an existing need)
- General principle could be useful for other applications (beyond LGAD Fermilab Presenter I Presentation Title or Meeting Title

Bench-testing

- Design an on-chip charge injection circuit that can deliver a wide range of charge pulses with well-known shape and amplitude to the FCFD0 input.
 - Implement an on-chip time-to-voltage converter with precision of ~ few pS to enable easy measurement of FCFD0 output delay and jitter.
 - Establish methods to accurately measure all relevant parameters of these test circuits (to ~1% level), and the FCFD0 input capacitance (so we can accurately mimic the LGAD capacitance).
 - These methods should use only readily available basic test equipment (pulse generator, oscilloscope, etc.)
- Detailed report at TWEPP21:

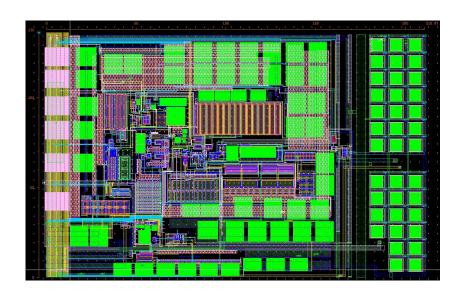
https://indico.cern.ch/event/1019078/contributions/4443948/attachments/2277824/3938152/FCFD0_TWEPP_talk.pdf

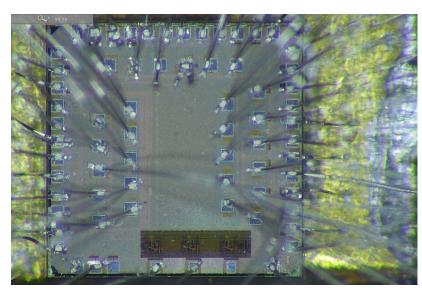


Simulation

Apply LGAD-like charge pulse to FCFD0 input.

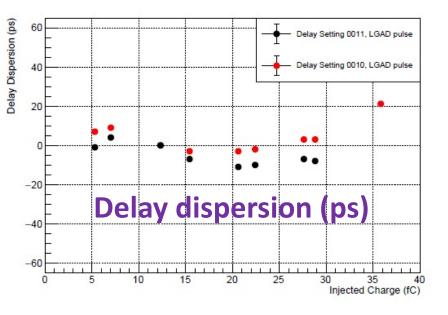
<u>Inject 4 different amplitudes</u>: Qin = 5.3 fC, 7.0 fC, 15.3 fC, 28.8 fC

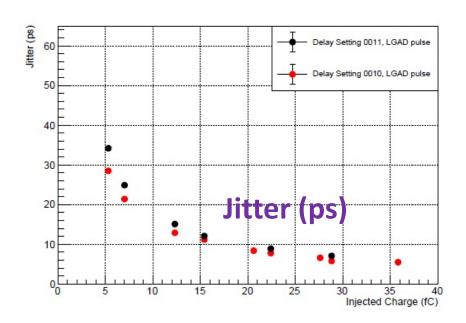

Comparator output has same delay for a range of input amplitudes



FCFDv0

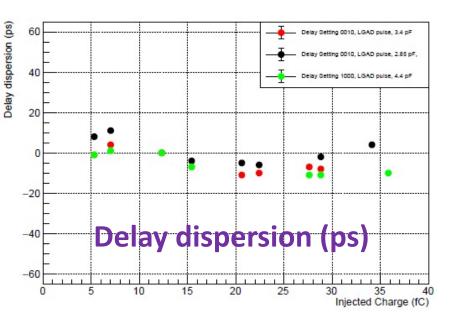
- First version of the chip to test and study the approach
 - Only analog output to measure the performance of the CFD approach
 - Measurements first performed using the internal charge injection circuit

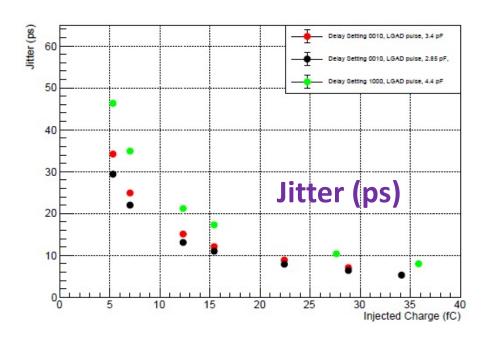




LGAD-shape injected pulse

 Measured delay dispersion and jitter vs. input charge for two different power modes





Effect of capacitance

Vary the input capacitance from 2.850 pF to 4.4 pF

Next steps

- Characterization of FCFDv0 with beta source and test beam
 - Designed dedicated board for measurements with LGADs
 - Measurements during next two months

Next steps

- Simultaneously, working on the design of the next v1 version
 - Focus on AC-LGAD readout which needs both amplitude and timing information from each channel
 - Add measurements of amplitude
 - Multichannel chip for AC-LGAD strip detector, probably around 10 channels
- Preliminary specs from our studies of AC-LGADs

Min Charge	Max Charge	Min MPV Charge	Max MPV Charge	Capacitance	ADC Resolution
2 fC	64 fC	15 fC	25 fC	0.5-10 pF	10%

Summary for FCFDv0

- Good performance for the first generation CFD-chip produced in TSMC 65nm technology node
 - Precise measurements and calibrations of the chip on a bench, stable operations, low dead time
 - Consistent with simulations: ~30 ps at 5fC, and < 10 ps at 30 fC, with LGAD-like pulses
- Now moving on to testing with LGAD signals
- Development of the next version is starting, targeting specifically
 AC-LGAD signals to achieve good timing and position resolutions

