

Reconstructing Inclusive variables with a Kinematic Fit

L. Gonella, P. G. Jones, <u>S. Maple</u>, P. R. Newman

Recap of reconstruction methods

- The kinematics of DIS can be reconstructed from any <u>two of the measured</u> <u>quantities</u> $\vec{D} = \{E_e, \theta_e, \delta_h, p_{t,h}\}$
 - Where $\delta_h = \Sigma E_i(1 \cos(\theta_i))$. E_i and θ_i are the energies and angles of deposits in the calorimeters which are not assigned to the scattered electron.
 - P_{th} is the transverse momentum of the hadronic final state

Electron method

$$Q^{2} = 2E_{e}E'_{e}(1 + \cos \theta_{e})$$

$$y = 1 - \frac{E'_{e}}{2E_{e}}(1 - \cos \theta_{e})$$

$$Q^{2} = \frac{p_{t}^{2}}{had}$$

$$Q^{2} = \frac{p_{t}^{2}}{1 - y}$$
Double Angle method

$$Q^{2} = 4E_{e}^{2}\frac{\sin \gamma(1 + \cos \theta_{e})}{\sin \gamma + \sin \theta_{e} - \sin(\theta_{e} + \gamma)}$$

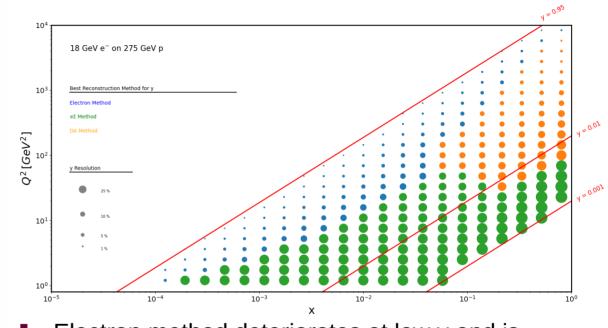
$$x = \frac{E_{e}}{E_{p}}\frac{\sin \gamma + \sin \theta_{e} + \sin(\theta_{e} + \gamma)}{\sin \gamma + \sin \theta_{e} - \sin(\theta_{e} + \gamma)}$$

2

Recap of reconstruction methods

- These methods each come with advantages and drawbacks that depend on:
 - The x and Q^2 of the event
 - The presence of ISR/FSR

e- Σ method $Q_{e\Sigma}^2 = Q_e^2$ $x_{e\Sigma} = \frac{Q_{\Sigma}^2}{sy_{\Sigma}}$



- Electron method deteriorates at low y and is sensitive to ISR
- Double Angle method is sensitive to ISR
- Can we do better?

Kinematic Fitting in BAT (Bayesian Analysis Toolkit)

• From the measured quantities $\vec{D} = \{E_e, \theta_e, \delta_h, p_{t,h}\}$ we can reconstruct 3 pieces of information: $\vec{\lambda} = \{x, y, E_v\}$

Prior

All we need is a prior and a likelihood function:

This approach allows one to calculate the energy of a potential ISR photon!

$$P_{o}(\overrightarrow{\lambda}) = \frac{1 + (1 - y)^{2}}{x^{3}y^{2}} \frac{[1 + (1 - E_{\gamma}/A)^{2}]}{E_{\gamma}/A}$$
$$\underbrace{\text{Likelihood*}}_{P(\overrightarrow{D}|\overrightarrow{\lambda}) \propto \frac{1}{\sqrt{2\pi}\sigma_{E}}} e^{-\frac{(E_{e} - E_{e}^{\lambda})^{2}}{2\sigma_{E}^{2}}} \frac{1}{\sqrt{2\pi}\sigma_{\theta}} e^{-\frac{(\theta_{e} - \theta_{e}^{\lambda})^{2}}{2\sigma_{\theta}^{2}}} \frac{1}{\sqrt{2\pi}\sigma_{\delta_{h}}} e^{-\frac{(\delta_{h} - \delta_{h}^{\lambda})^{2}}{2\sigma_{\delta_{h}}^{2}}} \frac{1}{\sqrt{2\pi}\sigma_{P_{T,h}}} e^{-\frac{(P_{T,h} - P_{T,h}^{\lambda})^{2}}{2\sigma_{P_{T,h}}^{2}}}$$

* Here we assume the measured parameters in \vec{D} are gaussian distributed according to the detector resolution: this does not have to be the case.

Event generation

- Pythia8 used to generate 18x275 GeV² e-p events (no ISR/FSR, Q²>100GeV²)
- "True" quantities smeared according to paramaterisations of the ZEUS detector*

 $\begin{array}{l} \text{Smearing taken for hadronic variables as} \\ \sigma_{P_T^{\text{had}}} = 0.35 \sqrt{P_T^{\text{had}}} \\ \sigma_{\delta_{\text{had}}} = 0.35 \sqrt{\delta_{\text{had}}} \\ \sigma_E = 0.2 \sqrt{E} \oplus 0.008 \quad \text{(ZEUS values, R. Aggarwal, PhD thesis)} \\ \sigma_{\theta} = 0.0025 \sqrt{\theta} \quad \text{(ZEUS values, R. Aggarwal, PhD thesis)} \end{array}$

See A. Caldwell talk at DIS2022 https://indico.cern.ch/event/1072533 /contributions/4806091/attachments/ 2435573/4171130/KF-DIS.pdf

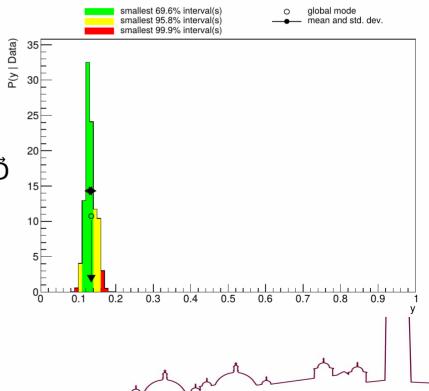
* Can think of this as being like running $18x275GeV^2$ events at ZEUS \rightarrow this does not correspond to any "real" experiment, it is only being used as a proof of concept \rightarrow to be repeated with Detector 1 parameterisations

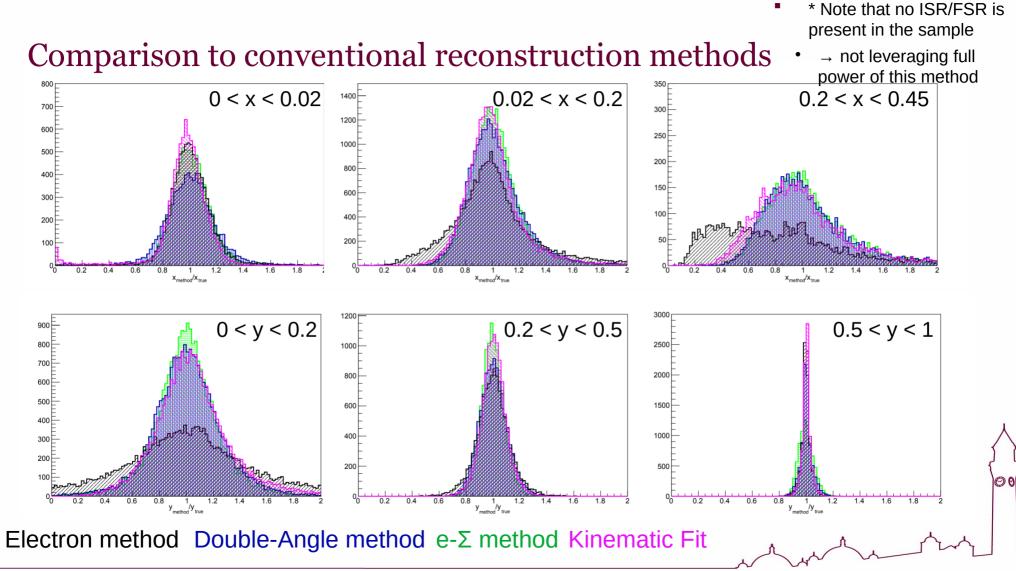
Reconstruction

- Input smeared (or reconstructed) variables $\vec{D} = \{E_e, \theta_e, \delta_h, p_{t,h}\}$
- Start off with prior distribution

 $P_o(\vec{\lambda}) = \frac{1 + (1 - y)^2}{x^3 y^2} \frac{[1 + (1 - E_{\gamma}/A)^2]}{E_{\gamma}/A}$

- This gives our initial model parameters x, y, E_v
- Calculate what values \vec{D} would have if these were our parameters (\vec{D}_{model})
- Determine the likelihood of getting our measured D
 values given the expected distribution of the D
 model
 variables
- Run Metropolis algorithm (Markov Chain Monte Carlo algorithm) for 100k iterations to find the marginalised posterior
- Output is values of x, y, E_v at mode of posterior





If ISR/FSR is present?

Events

10000

8000

6000

4000

2000

0

0.2

0.4

0.6

0.8

1

 Expect to see large gains compared to traditional reconstruction methods when ISR/FSR is strong

 $E_{\gamma} > 0 \text{ GeV}$

Kinematic fit

Double Angle

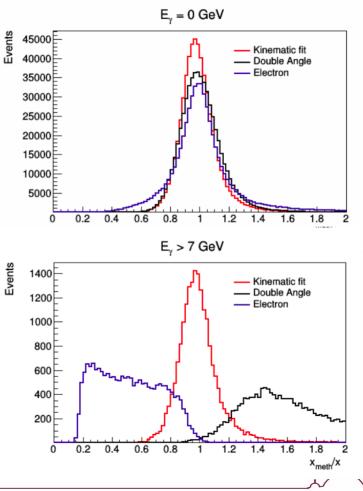
Electron

1.4 1.6

1.8

x_{meth}/x

1.2

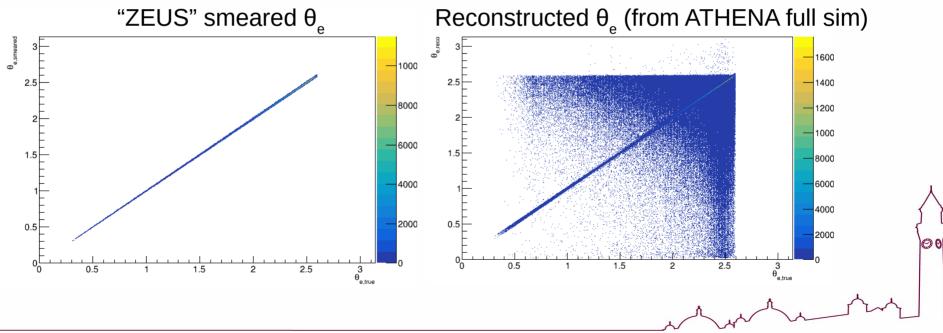


Plots from https://arxiv.org/abs/2 206.04897

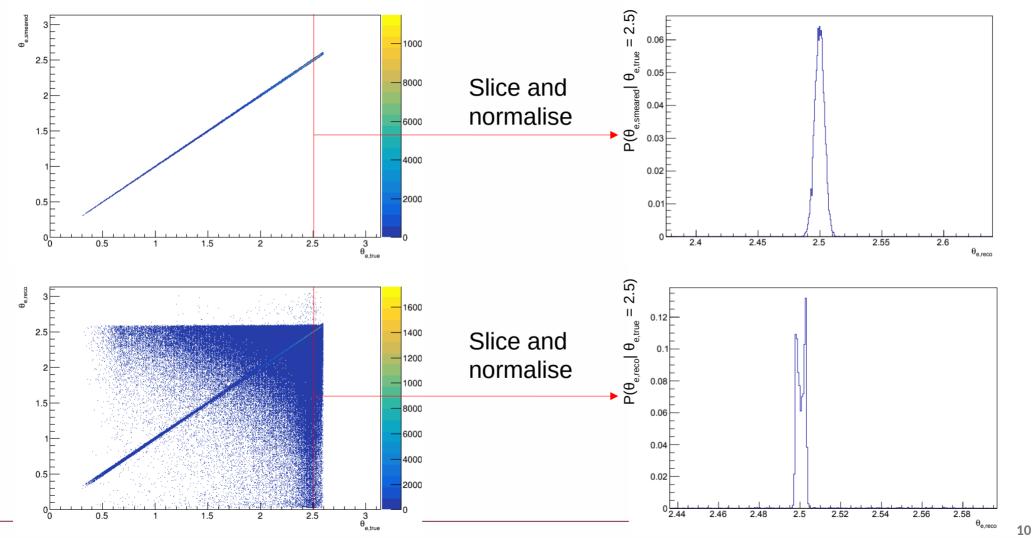
 $\Theta \mathbf{0}$

Application to a "real" detector

- Output from full detector simulations (Right) does not match the perfect gaussian distribution we get by smearing
 - We can either parameterise the reconstructed distributions (e.g. using our detector resolutions), or use the distributions to obtain a likelihood function



Probability Distribution from histograms



Summary

- Traditional reconstruction methods do not leverage all of the information available to us:
 - Using a kinematic fit can obtain a high quality reconstruction and the energy of a possible ISR photon

Next Steps

- Parameterising the quantities in D
 may not lead to the best possible reconstruction
 - \neg Produce likelihood distribution from MC information → compare against results from parameterisation