Fast Simulation Tool for tracker geometry optimization

Shyam Kumar, Annalisa Mastroserio, Domenico Elia, Giacomo Volpe University and INFN Bari, Italy

Conceptual Design Report for the Upgrade of the ALICE ITS (Pages 53-58)

https://cds.cern.ch/record/1431539/files/LHCC-G-159.pdf

14/07/22

ECCE Setup (Fun4All)

Magnetic field: 1.4 Tesla

Barrel	Т	rac	ker

Material budget for Vtx support should be similar to Barrel support

Name	Radius (cm)	X/X0
BeamPipe	3.1	0.0022
Vtx1	3.3	0.0005
Vtx2	4.35	0.0005
Vtx3	5.40	0.0005
VtxSupport	6.3	0.3/30
Barr1	21.0	0.0005
Barr2	22.68	0.0005
BarrSupport	23.50	0.03/30
MM1	33.14	0.0026
MM2	51.0	0.0026
ACLGAD	64.0	0.0558
DIRC	72.96	0.1274
MM3	77.0	0.0026

R-Phi resol (cm)	R-Z resol (cm)	
10.0e-4/sqrt(12)	10.0e-4/sqrt(12)	
55.0e-4	55.0e-4	
55.0e-4	55.0e-4	
30.0e-4	30.0e-4	
 55.0e-4	55.0e-4	

14/07/22

ECCE Geometry and Event Display

Geometry used for the simulation in Fun4All

EveManager

<image>

14/07/22

Particle Simulation

1M Negative Pions uniform in η [-3.5,3.5] and momentum [0.1,10.]

Particle Simulation

1M Negative Pions uniform in η [-3.5,3.5] and transverse momentum [0.1,10.]

Detector1 Simulation

Basic Kinematics

Particle uniform in p

 $p_T = \frac{p}{\cosh(\eta)}$

 $p = p_T \cosh(\eta)$

Results

Barrel Tracker

Zbynek Drasal, Werner Riegler

arXiv:1805.12014

Tracking Performances: Momentum and DCA resolutions

Momentum Resolution: affects width of invariant mass peak

 p_{T} resolution:

$$\frac{\Delta p_T}{p_T}|_{res.} = \frac{\sigma_{r\phi} p_T}{0.3 B_0 L_0^2} \sqrt{\frac{720N^3}{(N-1)(N+1)(N+2)(N+3)}}$$
Linear term
$$\approx \frac{12 \sigma_{r\phi} p_T}{0.3 B_0 L_0^2} \sqrt{\frac{5}{N+5}}$$
$$\frac{\Delta p_T}{p_T}|_{m.s.} = \frac{N}{\sqrt{(N+1)(N-1)}} \frac{0.0136 \,\text{GeV/c}}{0.3\beta B_0 L_0} \sqrt{\frac{d_{tot}}{X_0 \sin \theta}} \left(1 + 0.038 \ln \frac{d}{X_0 \sin \theta}\right)$$
Constant term (at $\beta < 1$ increase)

Based on Gluckstern Approach (equal distance between planes and equal spatial resolutions)

SR (Spatial Resolution): Uncertainity associated with finite size of pixels

MS (Multiple Scattering): Uncertainity associated with thickness of Material

$$\frac{\sigma_{pT}}{p_T} = \sqrt{\left(\frac{\sigma_{pT_{SR}}}{p_T}\right)^2 + \left(\frac{\sigma_{pT_{MS}}}{p_T}\right)^2}$$

14/07/22

DCA_{xv} Resolution

DCA Resolution: Reconstruction of secondaries

 $\begin{aligned} \Delta d_0|_{res.} &\approx \frac{3\sigma_{r\phi}}{\sqrt{N+5}} \sqrt{1 + \frac{8r_0}{L_0}} + \frac{28r_0^2}{L_0^2} + \frac{40r_0^3}{L_0^3} + \frac{20r_0^4}{L_0^4} \\ \Delta d_0|_{m.s.} &\approx \frac{0.0136 \,\text{GeV/c}}{\beta p_T} r_0 \sqrt{\frac{d}{X_0 \sin \theta}} \sqrt{1 + \frac{1}{2} \left(\frac{r_0}{L_0}\right) + \frac{N}{4} \left(\frac{r_0}{L_0}\right)^2} \end{aligned}$

$$\sigma_{d_0} = \sqrt{\sigma_{d_0}^2} + \sigma_{d_0}^2$$

 (r_0/L_0) is very important for DCA_{xv} resolutions

Simple Example

Consider an example of silicon layers of 50 μ m thickness

$$r_0 = 2 \text{ cm } L_0 = 7-2 = 5 \text{ cm};$$

 $\sigma_{r\phi} = 10 \,\mu m$

Detector1 Simulation

Tracking Performances

Markers (Fun4All), Magenta (FastSim), Blue lines (PWG requirement)

14/07/22

- Changing the Material Budget of Sagitta Layers
- Shifting Sagitta Layers from the Default Position (default radius -14.0 cm and default radius + 9.0 cm)
- \blacktriangleright Changing the Resolution of Micromegas Layers (55 µm, 100 µm, 150 µm)
- Moving Last Micromegas Layer Apart (default (77 cm), 100 cm, 300 cm)

Changing Material Budget of Sagitta Layers

 $p_{Tmin} = 0.35357$ GeV/c algorithm can handle

Shfiting Sagitta Layers

Detector1 Simulation

Tracking Performance with Sagitta layer Shifting

Detector1 Simulation

Different Micromegas Resolution

14/07/22

Moving Last MM Apart

- Moving last layer apart increases lever arm so improves resolution (slope of linear term decreases) at high momentum.
- \succ At the same time p_{Tmin} to reach at the last layer is increased.

- Extracted basic performances as an excercise for the ECCE geometry in Fun4All.
- Fast Simulation compared with the full simulation in Barrel region for validation.
- \blacktriangleright Also presented, the effect after changes in the setup.
- This Fast simulation tool can help to optimize the detector layout in the barrel region.
- Still trying other configuration to understand the peformances (it's easy and quick).

Thank you !!!!!

Longitudinal DCA_z

Comparison with Fast Simulation

Corresponding to Simple example of geometry on slide 11

14/07/22

Transverse DCA Resolutions

Markers (Fun4All), Magenta (FastSim), Blue lines (PWG requirement)

14/07/22

Tracking Performance with Sagitta layer Shifting

Shifting sagitta layers with the equal radius

Understanding of Multiple Scattering

