Electronic structure and correlations in layered nickel oxides and arsenides – how to support superconductivity?

Dan Dessau

University of Colorado Boulder
Dessau@Colorado.edu

We have performed high resolution ARPES measurements on the layered nickel oxides \(\text{R}_4\text{Ni}_3\text{O}_{10} \), \(\text{R}_4\text{Ni}_3\text{O}_8 \) (R=La, Pr) that are analogs to the cuprate superconductors, and on the family \(\text{(La,Ba)}\text{Ni}_2\text{As}_2 \) that are analogs to the Fe-based superconductors. We study the Fermi surfaces, band dispersions/mass enhancements, energy-dependent electronic scattering rates, and (for the arsenides) charge density wave physics. Through a comparison with electronic structure measurements and with results from the cuprates and Fe superconductors I discuss the critical electronic structure and correlation aspects of these materials for supporting superconductivity.