Momentum dependent scaling exponents of cuprate strange-metal self energies: ARPES meets semi-holography

S. Smit¹, E. Mauri², L. Bawden¹, F. Heringa¹, F. Gerritsen¹, E. van Heumen¹, Y.K. Huang¹, T. Kondo³, T. Takeuchi⁴, N. E. Hussey^{5,6}, M. Allan⁷, T.K. Kim⁸, C. Cacho⁹, A. Krikun⁹, K. Schalm¹⁰, H.T.C. Stoof², M.S.Golden^{1,11}

 Van der Waals - Zeeman Institute, Institute of Physics, University of Amsterdam
 Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University

³ Institute for Solid State Physics, University of Tokyo
 ⁴ Energy Materials Laboratory, Toyota Technological Institute, Nagoya
 ⁵ High Field Magnet Laboratory (HFML-EMFL) and Institute for Molecules and Materials, Radboud University, Nijmegen

⁶ H. H. Wills Physics Laboratory, University of Bristol
⁷ Leiden Institute of Physics, Leiden University
⁸ Diamond Light Source

⁹ NORDITA, KTH Royal Institute of Technology and Stockholm University
¹⁰ Institute-Lorentz for Theoretical Physics, Leiden University
¹¹ Dutch Institute for Emergent Phenomena (DIEP), 1098 XH Amsterdam

High resolution ARPES enables the precise experimental determination of the electronic self-energy. Here we present high quality data from the strange metal single-layer cuprate $(Pb,Bi)_2Sr_{2-x}La_xCuO_{6+\delta}$, measured over a wide range in w- and T in the nodal direction. Constant energy cuts through the spectral function have a non-Lorentzian lineshape, meaning the nodal self-energy is k dependent. These experimental data provide a new test for aspiring theories.

We go on to show that the experimental data are captured remarkably well by a power law with a k-dependent scaling exponent, smoothly evolving with doping, a description that emerges naturally from AdS/CFT-based semi-holography, putting a spotlight on holographic methods for the quantitative modelling of strongly interacting quantum materials like the cuprate strange metals [1].

[1] arxiv.org/pdf/2112.06576.