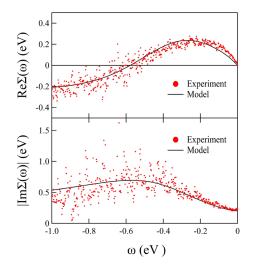
Evauation of the normal self-energy in overdoped Bi2201

Y. Miyai¹, S. Kumar^{1,2}, T. Kurosawa³, M. Oda⁴, S. Ideta^{1,2}, K. Shimada^{1,2}

¹Graduate School of Advanced Science and Technology, Hiroshima University

²Hiroshima Synchrotron Radiation Center, Hiroshima University


³ Fuculty of Science and Engineearing, Muroran Institute of Technology

⁴ Department of Physics, Hokkaido University

Author Email: d220057@hiroshima-u.ac.jp

High- $T_{\rm C}$ cuprate superconductors have attracted much interest not only for their high superconducting transition temperature ($T_{\rm C}$) but also for their intriguing physical properties derived from several competing interactions. To understand these physical properties, it is necessary to clarify the quasiparticle properties near the Fermi level ($E_{\rm F}$). Angle-resolved photoemission spectroscopy (ARPES) is an ideal tool to investigate the quasiparticle properties (lifetime, effective mass). Based on the quantitative analyses of high-resolution ARPES lineshapes one can evaluate the self-energy (Σ) due to the many-body interactions such as the electron-electron interaction (EEI) and the electron-boson(phonon) interaction (EBI). In this study, we focus on overdoped cuprate ($B_{\rm i}$,Pb)₂Sr₂CuO_{6+\delta} (Pb-Bi2201) with $T_{\rm C}$ ~6 K to clarify details of the normal self-energy above $T_{\rm C}$. The ground state of overdoped Pb-Bi2201 is interesting because a recent study reported re-entrant charge order [1] and ferromagnetic fluctuation [2]. The normal self-energy is also helpful to understand the anomalous self-energy in the superconducting state.

We analyzed the observed Fermi surface in the wide momentum region using a tight-binding (TB) model. Based on the TB-model band dispersion, we extracted the real part (Re Σ) and imaginary part (Im Σ) of the normal self-energy which is mainly derived from the EEI as shown in Fig. 1. Note that Re Σ has a zero point at $\omega \sim$ -0.6 eV, where |Im Σ |(=lifetime broadening) has the maximum value. It is the reason why the ARPES intensity is significantly suppressed around $\omega \sim$ -0.6 eV. The group velocity above $\omega \sim$ -0.6 eV is further reduced due to the EBI near the E_F. We analyzed the obtained self-energy due to the EEI employing a model complex function (solid line in Fig. 1). In addition, we evaluated the coupling parameter near the E_F and found the contribution from the EEI is comparable with that from the EBI.

Figure 1: Experimentally evaluated real and imaginary parts of the normal self-energy of overdoped Pb-Bi2201. Solid lines show fitting to a model self-energy.

References

[1] Y.Y. Peng et al., Nature Mater., 17, 697 (2018).

[2] K. Kurashima et al., Phys. Rev. Lett. 121, 057002 (2018).