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(Not so) Ordinary Matter

strong force
(gluons)

The ordinary matter in our universe is mainly o
ascribable to @gtoms which contains nucleons

quark down

proton

Nucleons are made by light quarks
(account for only ~ 1% of nucleon mass!):
Why is the nucleon so massive?

4.9% Ordinary

How are the constituents held together?

How does the spin of the nucleon arise?




EIC Science
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National Academy of Sciences

Finding 1: An EIC can uniquely address
three profound questions about nucleons —
neutrons and protons — and how they are
assembled to form the nuclei of atoms:

o How does the mass of the nucleon arise?

o  How does the spin of the nucleon arise?

o  What are the emergent properties of dense systems of gluons?

Finding 2: These three high-priority science questions can
be answered by an EIC with highly polarized beams of
electrons and ions, with sufficiently high luminosity and
variable center of mass energy.

Finding 3: An EIC would be a unique facility in the world
and would maintain U.S. leadership in nuclear physics

Finding 4: An EIC would maintain U.S. leadership in the
accelerator science and technology colliders and help to
maintain scientific leadership more broadly.

A machine for delving deeper than ever before into the building blocks of matter



EIC Science

World-wide interest

Map of institution’s locations

SCIENCE REQUIREMENTS
AND DETECTOR
CONCEPTS FOR THE
ELECTRON-ION COLLIDER
EIC Yellow Report

EIC Yellow Report (2021)
arXiv:2103.05419
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e  Origin of Nucleon Spin e Light-ion tagging

e Confined motion of partons e Pion/Kaon structure

EICUG membership @

time of EICUG Meetings

e 3D imaging quarks and gluons e Diffractive jets?
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e Quarks and gluons in the nucleus
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EIC Schedule and Milestones

FYI9  FY20 FY2l FY22

Critical *

Decisions 0(A) CD-I(A)

Jun 2021
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‘Approve start Approve pfoj.
CD-23A CD-3 of operations | completion
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Jal 2030 Jul 2031

Construction & Installation V777

Snapshot from Mar 2022*
some details being adjusted

Il RF Power Buildout

Commissioning & Pre-Ops
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Generic Detector R&D

\:] E Planned Milestones

" ‘I *EIC Schedule, J. Yeck, Mar 2022

Call for Collaboration Proposals
for Detectors at the Electron-lon Collider

Deadline forSubmission was. n,
December.1; 2021 .

 Brookhaven Nalional‘iﬁa,l;oralory (BNL) and ;he‘Thomas Jefferson National Accelerator Facility
(dLab) are pleased to the Call for C¢ orati P for Detectors to be located at
the El%*lron-lon Collider (EIC). The EIC will have the capacity to host two interaction regions, each
with a corresponding detector. It is expected that each of these two detectors would be

represented by a Collaboration.

EIC Detector Proposal Advisory Panel Meeting

suoljeloge||09-010.d

Process completed on March 21, 2022
Panel Report

6. Recommendations:

ECCE Reference Detector

The panel unanimously recommends ECCE as Detector 1. The proto-collaboration is urged to

openly accept additional collaborators and quickly consolidate its design so that the Project
Detector can advance to CD2/3a in a timely way.

L

EIC DETECTOR 1 GENERAL MEETING

Following the DPAP process , the EIC Community is moving towards the formation
of a scientific collaboration to support the realization of the EIC project detector
temporarily referred to as "Detector-1".

uol}eloqge||oD
spJjemo|


https://indico.bnl.gov/event/15297/contributions/61816/attachments/40383/67420/EIC%20Project%20Update%20March%202022.pdf
https://www.bnl.gov/eic/cfc.php
https://www.bnl.gov/eic/cfc.php
https://www.bnl.gov/dpapanelmeeting/
https://www.bnl.gov/dpapanelmeeting/files/pdf/dpap_report_3-21-2022_final.pdf

EIC Comprehensive Chromodynamics

Experiment

EIC Project POC
Rolf Ent (JLab)

Computing Team
Cristiano Fanelli (MIT)
David Lawrence (JLab)

Computing Working Groups:
Artificial Intelligence
William Phelps (CNU/JLab)
Computing and Software
Joe Osbom (ORNL)

Detector Team
Doug Higinbotham (JL:
Ken Read (ORNL)

Detector Working Groups:

Particle ID

Grag Kalicy (CUA),
Xiaochun He (GSU)
Magnetic Field
Paul Brindza (JLab),

IP8/Equipment Re-use .
John Haggerty (BNL)
Far Forward/Far Backward*

a6l Murray (KU),

oto (RIKEN), Igor Korover (MIT)

Tracking
Xuan Li (LANL),
Nilanga Liyanage (UVA)
Calorimetry
Friederike Bock (ORNL), Yongsun Kim
(Selong U)

Chris Cuevas (iLab),

Renuka Rajput-Ghoshal (JLab)
. DAQ/Electronics/Readout

Martin Purschke (BNL)

Proto-collaboration that comprised scientists from 98 institutions
Develop low-risk, cost-effective, flexible and optimized EIC detector

Detector concept based on a 1.5 T solenoidal magnet

ECCE Steering Committee
Or Hen (MIT)
Tanja Horn (CUA)
John Lajoie (ISU)

Physics Benchmarks

Team
Carlos Munoz-Camacho
(lJCLab-Orsay)
Rosi Reed (Lehigh U.)

Physics Working Groups:
Simulations
Cameron Dean (LANL), Jin Huang (BNL)
Inclusive Processes
Tyler Kutz (MIT), Claire Gwenlan (Oxford)
Semi-Inclusive
Ralf Seidl (RIKEN), Charlotte Van Hulse (Orsay)
Exclusive
Rachel Montgomery (Glasgow), Julie Roche (OU)
Diffractive and Tagging
Wenliang Li (W&M), Axel Schmidt (GWU)
Jets and Heavy Flavor
Cheuk-Ping Wong (LANL), Wangmei Zha (USTC)
BSM and Precision Electroweak
Sonny Mantry (UNG), Xiaochao Zheng (UVa)

L

https://www.ecce-eic.org

sted Detector Desi
the ECCE Tracker Example

Cristiano Fanelli', K;
on behalf of the ECCE

Laboratory for Nuc]

Cas
University of Re

Diversity, Equity a
Inclusion
Narbe Kalantarians (VUU, co-chair)
Christine Nattrass (UTK, co-chair)
Simonetta Liuti (UVA)
Elena Long (UNH)

Editorial Team

Tom Cormier (ORNL)
Richard Milner (MIT)
Peter Steinberg (BNL)

Executive Summary

Editorial Working Groups:

e Proposal Editing, Verification and
Version Control

e Costing and Management

cember 5, 2021



https://www.ecce-eic.org

The Reference Detector

*Tracker

Combines:

e |TS-3 Si technology
e Gaseous detectors
e AC-LGAD ToFs

e
K\

Y

*Particle Identification (PID)
with Cherenkov detectors

e  dual radiator ring-imaging
Cherenkov detector (RICH) in the
hadron direction

e DIRC (detection of internally
reflected Cherenkov light) in the
barrel

e modular RICH in the electron
direction.

Simulating these detectors is typically
compute expensive, involving many
photons that need to be tracked through
complex surfaces.

All three rely on pattern recognition of ring
images in reconstruction, and the DIRC is

the one having the more complex ring
patterns!

*Highlighting parts that will be discussed in this talk




Event Display and Reconstructed Features

Reconstruction typically deals with
+ve charged tracks

relatively large feature space (low and
high-level features) combining
sub-detectors

-ve charged tracks

o

For illustrative purposes, showing
example of calorimetry (outer layers)

pril- 1
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How do we design
and optimize
Detectors?

v




AI for Design

Guo, Kai, et al. Materials Horizons 8.4 (2021

Table 1 Popular ML methods in design of mechanical materials

It is a relatively new but active area of research.

Many applications in, e.g., industrial material,

molecular and drug design.

:1163-1172.

ML method Characteristics

Example applications in mechanical materials design

Linear regression;

Model the linear or polynomial relationship
polynomial regression i

between input and output variables

Support vector machine; Separate high-dimensional data space with
SVR one or a set of hyperplanes

Random forest Construct multiple decision trees for

classification or prediction

Feedforward neural
network (FFNN); MLP

Connect nodes (neurons) with information
flowing in one direction

Capture features at different hierarchical
levels by calculating convolutions; operate
on pixel-based or voxel-based data

Recurrent neural network
(RNN); LSTM; GRU

Connect nodes (neurons) forming a directed
graph with history information stored in
hidden states; operate on sequential data

Generative adversarial
networks (GANs)

Train two opponent neural networks to
generate and discriminate separately until
the two networks reach equilibrium;
generate new data according to the
distribution of training set

Gaussian process
regression (GPR);
Bayesian learning

Treat parameters as random variables and
calculate the probability distribution of
these variables; quantify the uncertainty of
model predictions

Active learning Interacts with a user on the fly for labeling
new data; augment training data with
post-hoc experiments or simulations

Genetic or evolutionary
algorithms

Mimic evolutionary rules for optimizing
objective function

Reinforcement learning Maximize cumulative awards with agents
reacting to the environments.

Graph neural networks Operate on non-Euclidean data structures;
(GNNs) applicable tasks include link prediction,
node i ion and graph ication

Modulus'*? or strength'** prediction

Strength'?* or hardness'?* prediction; structural topology
optimization'**

Modulus™* or toughness**® prediction

Prediction of modulus,”’!!? strength,** toughness'* or i
hardness;” prediction of hyperelastic o plastic behaviors"*>*4*
identification of collision load conditions; "’ design of spinodoid
metamaterials'®*

05 o
104,10 102,103 o

Prediction of strain fields' or elastic properties’
high-contrast composites, modulus of unidirectional
composites,'** stress fields in cantilevered structures,'* or yield
strength of additive-manufactured metals;'*' prediction of
fatigue crack propagation in polycrystalline alloys;'*® prediction
of crystal plasticity; *° design of tessellate composites;'*” "
design of stretchable graphene kirigami;'**
structural topology optimization'*®***

Prediction of fracture patterns in crystalline solids;'**
of plastic behaviors in

prediction

144

modeling of porous media'”

Prediction of modulus distribution by solving inverse
elasticity problems;*** prediction of strain or stress fields in
composites;'*? composite design;'®* structural topology

D afio 165167 s jals design®s®

Modulus** or strength'*'** prediction; design of
supercompressible and recoverable metamaterials''®

Strength prediction***

Hardness Prediction;”" designs of active

materials; ®*! design of modular metamaterials’®*

Deriving microstructure-based traction-separation laws'”*

ials design'®®

Functional space

Desired properties (redox
potential, solubility, toxicity)

Chemical space

(Drug-like, photovoltaics,
polymers, dyes)

Z. Zhou et al., Scientific Reports, vol. 9, n

Direct Inverse

Experiment or
simulation (Schrodinger
equation)

o

High-throughput virtual
screening (e.g., with 3
filtering stages)

1, pp. 1-10, 2019

Inverse

Optimization
evolutionary strategies
generative models (VAE

GAN,RL)

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018




Optimization of Detectors Design

e \When it comes to designing detectors with Al this is a frontier topic with few examples
in the literature.

S. Shirobokov, V. Belavin, M. Kagan, A. Ustyuzhanin, and A.G. Baydin. Black-Box Optimization with Local Generative Surrogates, 2020. arXiv:
2002.04632.

T. Dorigo. Geometry optimization of a muon-electron scattering detector. Physics Open, 4:100022, 2020.
F. Ratnikov. Using machine learning to speed up and improve calorimeter R&D. Journal of Instrumentation, 15(05):C05032, 2020.
E. Cisbani, CF, et al. Al-optimized detector design for the future Electron lon Collider: the dual-radiator RICH case. JINST 15(05):P05009, 2020.

S. Meyer et al. Optimization and performance study of a proton CT system for pre-clinical small animal imaging. Phys. Med. Biol., 65(15):155008, 2020.
doi:10.1088/1361-6560/ab8afc.

CF, et al. (ECCE), Al-assisted Optimization of the ECCE Tracking System at the Electron lon Collider arXiv:2205.09185, 2022



Full Optimization of Detectors/Accelerators

When it comes to designing detectors and accelerators with Al this is a frontier topic with few
examples in the literature.

o  What follows uses “detector” as example but applies to both detector and accelerator — and can be extended
to many other applications

For years the full detector design has been studied after the subsystem prototypes are ready
(taking into account the phase constraints from the full detector or outer layers).

We need to use advanced simulations which are computationally expensive (Geant)...

Modern complex design: many parameters (and multiple objective functions) — curse of
dimensionality [1].

Al-assisted strategies can help designing more efficiently (in terms of performance and
resources needed).

o  Need establishing a full body of instructions [2].

o  The choice of a suitable algorithm is a challenge itself (no free lunch theorem [3]) and always requires some
degree of customization.

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
[2] CF et al. JINST 15.05 (2020): PO5009.
[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67-82



The Typical Workflow R fi?iiw}

International Atomic Energy Agency

° Al can assist in designing more efficiently

detectors (performance, costs). customization

° It helps steering the design (and eventually
fine-tune it). Design parameters

° It can capture hidden correlations among
design parameters.

Detector
Simulation

compute intensive (Geant4)
Forward simulations needed to simulate quantum phenomena
(interaction of particles with matter)



https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx
https://nucleus.iaea.org/sites/ai4atoms/SitePages/WG-AI4PHY.aspx

]
Multi-Objective Optimization flm .
\!
s " =
e The problem becomes challenging when the objectives are of conflict to each other, 14) > fLB) .
that is, the optimal solution of an objective function is different from that of the B B a
other. = al
N
e In solving such problems, with or without constraints, they give rise to a trade-off g
optimal solutions, popularly known as Pareto-optimal solutions. £
2

Due to the multiplicity in solutions, these problems were proposed to be solved suitably using evolutionary
algorithms which use a population approach in its search procedure.

MO-based solutions are helping to reveal important hidden knowledge about a problem — a matter which is
difficult to achieve otherwise

During the proposal we used both evolutionary (1) and bayesian approaches (2). | will describe now (1).

The ECCE Inner Tracker Design Optimization considers simultaneously:

momentum resolution
angular resolution
Kalman filter efficiency
(pointing resolution)
Mechanical constraints

New
Baseline

Ratio =




Popular AI-Strategies (in a nutshell)

Non—-dominated Crowding
: sorting distance
Evolutionary sorting

Population [1{0]0{1]1|1/0{1]0{0{0}1]0 o/oj1j1|of1]0/1/0f1|0j1]1

crossover

o/o/1]1[1]1]o]1]oo]0]1]0]

, -« Rejected
mutation
1]oJoJ10l1]ololol1]0]1]1 o/ol1]1[1]1]ol1]o]1]0]1]0
This is one of the most popular approach, characterized by: f2 The crowding distance d, of point
e . . [ ) iis a measure of the objective
L Use of an elitist principle space around i which is not
.. . . . . 1 ied b th lution i
e  Explicit diversity preserving mechanism i+1 e A e population
. . . S SR A A
e Emphasis in non-dominated solutions r . |
| I
1
The population R, is classified in non-dominated fronts. I ® !
Not all fronts can be accommodated in the N slots of available in the new L - & i-1
population P, .. We use crowding distance to keep those points in the last L
‘7 ‘i front that contribute to the highest diversity.



Popular AI-Strategies (in a nutshell)

Bayesian

e BO is a sequential strategy
developed for global
optimization.

e After gathering evaluations we
builds a posterior distribution
used to construct an acquisition
function.

e This cheap function determines
what is next query point.

Posterior

Acquisition function

t=3

o—/_\o

Next
point

Posterior

Acquisition function

t=4

New
observation

A WN -

.GoTo 1.

. Select a Sample by Optimizing the Acquisition Function.
. Evaluate the Sample With the Objective Function.
. Update the Data and, in turn, the Surrogate Function.

Extension to multiple objectives



AT-Assisted Optimization of the ECCE Tracking
System at the Electron Ton Collider

uRwell 2
uRWELL3 Sagitta ITS3

ETTL
| uRwell 1

Support Cone Angle () |°

‘— ‘l CF, et al. (ECCE), Al-assisted Optimization of the ECCE Tracking System at the Electron lon Collider arXiv:2205.09185, 2022


https://ai4eicdetopt.pythonanywhere.com

DTC /E/S\T\ ot 3 //FST\ dRICH ~ Click on hyperlinks (Fun4All)
i7"\ 1/ e
[? | — ‘ L Vertex Si Barrel
g | 7S
I @/// \ (-
e MHICH CT|TL Vertex ITS3 XZwe{ A
Reference Ongoing R&D
Barrel X/XO0 [%] Pitch [um] Radii [cm] Length [cm] Radii [cm] Length [cm]
Layer 1 0.05 10 3.3 27 3.3 27
Layer 2 0.05 10 4.35 27 4.35 27
Layer 3 0.05 10 5.4 27 5.4 27

Values being used in these slides



https://github.com/ECCE-EIC/macros/blob/master/common/G4_Barrel_EIC.C

FST

EST  Sagitta ITS3 RO~
N ///\\~ |
FEA\ /AR

. — Sagitta Si Barrel
53 .
e MRCH GTTL  vertex 1TS3 XZwe{ A
Reference Ongoing R&D
Barrel X/XO0 [%] Pitch [um] Radii [cm] Length [cm] Radii [cm] Length [cm]
Layer 1 0.05 10 Al o4 14.0 54
Layer 2 0.03 10 22.68 o4 15.5 54
\

T

another potential parameter to optimize?



https://github.com/ECCE-EIC/macros/blob/master/common/G4_Barrel_EIC.C

EST

FST

dRICH

Additional thickness for services, cooling is given here

\ \ .
f = EST Disks
.y ‘
\
MRICH oTTL  Vertex ITS3 \ / A
ETTL HRwell FTTL
Reference Ongoing R&D
Disk Si Thickness[um] Pitch[um] RMin [em] RMax[cm] | ZPos[cm] RMin [cm] RMax [cm] ZPos[cm]
EST 4 35 10 5.5 41.5 -106 6.0 48.0 -107.4
EST 3 35 10 4.5 40.5 -79 4.8 35.25 -80.05
EST 2 35 10 3.5 36.5 -562 3.3 27.3 -568.29
EST 1 35 10 3.5 18.5 -25 3.3 15.3 -33.2



https://github.com/ECCE-EIC/macros/blob/master/common/G4_FST_EIC.C
https://github.com/ECCE-EIC/macros/blob/07b036b6bf5ed2e9f67f98c94fd30919828b5656/common/G4_FST_EIC.C#L162

dRICH~_

Additional thickness for services, cooling is given here

= FST Disks
i
.
\
MRICH \
CTTL Vertex ITS3 .
ETTL " W FTTL Reference Ongoing R&D
Disk Si Thickness [um] Pitch [um] RMin [cm] RMax [em] ZPos [cm] RMin [cm] RMax [em] ZPos [cm]
FST5 35 10 7.5 43.5 125 8.2 62.2 144
FST 4 35 10 5.5 41.5 106 5.8 49.8 115
FST3 35 10 4.5 40.5 73 4.8 34.8 79.85
FST 2 35 10 3.5 36.5 49 3.5 27.5 58.29
FST 1 35 10 3.5 18.5 25 3.5 15.5 33.2



https://github.com/ECCE-EIC/macros/blob/master/common/G4_FST_EIC.C
https://github.com/ECCE-EIC/macros/blob/07b036b6bf5ed2e9f67f98c94fd30919828b5656/common/G4_FST_EIC.C#L162

FST

T\

~—

R AN Ny

N¥4)

|\ -
g
\! -

e MRCH GTTL  vertex 1TS3 : | / /e

uRwell Cylinder

Additional thickness for services, cooling is given here

pRwell FTTL
Reference Ongoing R&D
Barrel Res [um] Thickness [cm] Radii [cm] Length [cm] Radii [cm] Length [cm]
Layer 1 55 0.03 33.14 80 33.14 140
Layer 2 55 0.03 51.00 212 51.00 230
Layer 3 55 0.03 77.02 342 77.02 342

N

another potential parameter to optimize?



https://github.com/ECCE-EIC/macros/blob/master/common/G4_mRwell_EIC.C
https://github.com/ECCE-EIC/macros/blob/07b036b6bf5ed2e9f67f98c94fd30919828b5656/common/G4_FST_EIC.C#L162

FST

| l EST Sagitta ITS3
i AAAN ]

JLL\

dRICH

TOF Detectors

e MRCH GTTL  vertex 1TS3 pre{ A
Reference Ongoing R&D
TOF TTL Si Thickness [um] Pitch [um] RMin [cm] RMax [cm] L [em] RMin [cm] Tc':wn?]x L [ecm]
CTTL 85 30 64 - 140 64 - 140
ETTL 85 30 8 64 -155.5 8 64 169
FTTL 85 30 7 87 182 7 87 182

‘f ‘I Additional thickness for services, cooling is given here



https://github.com/ECCE-EIC/macros/blob/master/common/G4_TTL_EIC.C
https://github.com/ECCE-EIC/macros/blob/07b036b6bf5ed2e9f67f98c94fd30919828b5656/common/G4_FST_EIC.C#L162

EIC Detector Tracker

EST  Sagitta ITS3

Sub Detector No Of Technolo Pitch/res Thickness Descriotion
System Layers v [um] [X/X0] P
Monolithic Active Pixel Sensor; EIC R&D eRD111.
Vertex Barrel 3 MAPS-ITS3 10 0.05 High precision tracking.
mRICH
CTTL Vertex ITS3
. Monolithic Active Pixel Sensor; EIC R&D eRD11. L uRwell
Sagitta Barrel 2 MAPS-ITS3 10 0.05 High precision tracking.
) ECCE design (non-projective)
Outer Barrel 3 pRwell 55 0.2 uRwell is a gaseous based t.racker. E.IC R&D ERDS. Design Parameter
Low Cost tracking solution URWELL 1 (Inner) (r) Radius [17.0, 51.0 cm]
MRWELL 2 (Inner) (r) Radius [18.0,51.0 cm]
Low Gain Avalanche Detectors (ACLGAD): EIC R&D EST 4 z position [-110.0, -50.0 cm]
CTTL (TOF) 1 AC-LGAD 30 ~0.1 ERD112. £l Srpos o L sdithion]
High precision tracking and Timing. EST 2 z position [-80.0, -30.0 cm]
EST 1 z position [-50.0, -20.0 cm]
FST 1 z position [20.0, 50.0 cm]
Monolithic Active Pixel Sensor; EIC R&D eRD11. FST2z position [30.0, 80.0 cm]
EST 4 MAPS-ITS3 10 0.3 High precision tracking. FST 3 z position [40.0, 110.0 cm]
FST 4 z position [50.0, 125.0 cm]
Monolithic Active Pixel S . EIC R&D oRDA1 FST 5 z position [60.0, 125.0 cm]
FST 5 MAPS-ITS3 10 0.3 onolithie Acfive Pixel Sensor; EIC R&D eRDIL. ECCE ongoing R&D (projective)
High precision tracking. Ty
Angle (Support Cone) [25.0°, 30.0°]
Low Gain Avalanche Detectors (ACLGAD): EIC R&D HMRWELL 1 (Inner) Radius [25.0,45.0 cm]
ETTL 1 AC-LGAD 30 0.1 ERD112. High precision tracking and timing ETTL z position [-171.0, -161.0 cm]
EST 2 z position [45, 100 cm]
EST 1 z position [35, 50 cm]
- Low Gain Avalanche Detectors (ACLGAD): EIC R&D FST 1 z position [35,50 cm]
FTTL L AC-LGAD 30 0.1 ERD112. High precision tracking and timing FST 2 z position [45, 100 cm]
FST 5 z position [100, 150 cm]

FTTL z postion [156, 183 cm]


https://indico.bnl.gov/category/354/
https://indico.bnl.gov/category/354/
https://wiki.bnl.gov/eic/upload/ERD6_ProgressReport_202103_Final.pdf
https://indico.bnl.gov/category/323/
https://indico.bnl.gov/category/323/
https://indico.bnl.gov/category/354/
https://indico.bnl.gov/category/354/
https://indico.bnl.gov/category/323/
https://indico.bnl.gov/category/323/
https://indico.bnl.gov/category/323/
https://indico.bnl.gov/category/323/

Parametrization arXiv:2205.09185

Parametrization of the support structure

- Plateau
— Vertex/Sagitta Support
——Conical Support

Parametrization of disks radii and TTL

0

= g + plateau Implementation of Geometric
Constraints

TuRwell-1 Rk ( RMax and RMin of the disks are then
calculated based on the support
structure.

Sagitta Length fixed and Radius
6 = Support Cone Angle changed based on the cone angle.

Parametrization underlies the Al-assisted design and can explore non-projective as well as projective



Reference VS Projective (R&D)
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Parametrization underlies the Al-assisted design and can explore non-projective as well as projective



Reference VS Projective (R&D)
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Figure 5: Tracking and PID system in the non-projective (left) and the ongoing R&D projective (right) designs: the two figures show the different geometry
and parametrization of the ECCE non-projective design (left) and of the ongoing R&D projective design to optimize the support structure (right). Labels in red
indicate the sub-detector systems that were optimized, while the labels in blue are the sub-detector systems that were kept fixed due to geometrical constraint. The
non-projective geometry (left) is a result of an optimization on the inner tracker layers (labeled in red) while keeping the support structure fixed, The angle made by
the support structure to the IP is fixed at about 36.5°. The projective geometry (right) is the result of an ongoing project R&D to reduce the impact of readout and
services on tracking resolution.




“Soft”/"Hard” Constraints

sub-detector

EST/FST disks

sagitta layers

constraint

soft constraint: sum of residuals
in sensor coverage for
sensor dimensions: d =
(30.0) mm
strong constraint: minimum
distance between 2 consecutive
disks

disks | pt i ! i
min Z Ry — R, Rou — Ry
d d

i

Zns1 — 2Zp >= 10.0 cm

B A soft constrain!: residual in
,,,,',1{ —sagma {‘“*’”"' Jl} sensor coverage for every layer;
v w sensor strip width: w = 17.8 mm
strong constraint: minimum
distance between pRwell barrel
layers

Tnsl —Tn >=5.0cm

Like,
Engineering
Constraints.

GEANT4
unstable with

New Design Point

Check Strong
Constraints

GEANT4 model

HPC-Cluster
issue.

Compute
performance
metric in ‘p’
and ‘7’ bins.
Evaluate Fit

quality

Overlap Checks

Start sim with
timeout

Analyse
Performance & Fits

Penalize Heavily

Penalize Heavily

Do not penalize
Omit the design

Rise Alarm
Do not carry to next
call

Compute objectives and pass to optimizer



Integration during the ETC Detector Proposal

Light/smart optimization pipelines ran during the “explorative”

AETOTRUIT PR ERES G phase of the detector proposal

necessarily mean “fine-tuning”

e We want to use these
algorithms to: (1) steer the
design and suggest
parameters that a
“manual’/brute-force
optimization will likely miss to
identify; (2) further optimize
some particular detector
technology (see d-RICH
paper, e.g., optics properties)

Detector Team
Technology Selection
Baseline Design
Alternative Configurations

Physics Team
Physics Signal Selection
Performance Evaluation

Computing Team
Simulations Campaigns

e Al allows to capture hidden Optimization Pipelines
correlations among the

design parameters.

Solutions from Pareto Front
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e All “steps” (physics, detector)
involved in the Al
optimization, strong interplay
between working groups

New optimization pipelines



https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta

Implementation

e Objective functions Average of Weighted
Averages (n_obj = 3)
o Momentum resolution dp/p
o Theta resolution do/0
o Projected d@/@ at PID location.
o Kalman Filtering inefficiency
(improving the tracking reconstruction

ability of the algorithm)

e Validation of the solutions
o Validate by comparing optimal vs
baseline dg resolution, vertex
resolution and reconstruction

efficiency
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Implementation

2.5< | <3.5,6.0<p < 8.0GeV/c

Weighted sum with errors

Average
objective in  Sym in bins of P 14 bins

an bin
N, -
L 5 1 Zp W/),r) : R(f)p.))
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@ ECCE-EIC Singularity Container

Al-optimization

Parallelization GEANT4-based simulations
m ‘( Fun4All Framework

Input Managers Fun4AllServer — Output Managers

de trees
31 sugges.tetd Q x - - n(i e trees BT
esign points Joblib ]
Raw Data (PRDF) Analysis Modules BN
HepMC/Oscar \ Simulated PRDF
\‘_%
Q‘Q

Empt
& : Ra Calibrations ~ Histogram Manager

. - > 1 | ¥ [ ] l l = Root File
Evaluation of the o B . 1 1Bu PostGres DB~ File
Design points Y : ‘

Sort solutions : ) . : :
Approximate Pareto front i\ Fit objectives in 1 & p bins
Suggest next set of design points >.

1| ‘ /‘/ Compute Objectives and metrics




Computational Resources

time taken by GA + sorting

@® Expected Pareto (DTLZ1)
® NSGA-Il Pareto (DTLZ1)

—&— NSGA-II time (DTLZ1)

e For the complexity of the problem and the chosen
population size, the computing time is dominated
by simulations and not by the Al part

Physics Team
P nal

i Selection
Py e Evaluation
07 nfigurations

Different technology configurations

New optimization pipelines

population size 100
# objectives 3
offspring 30
design size 11 9)
# calls (tot. budget) 200
same as
offspring
# charged 7 tracks «» 120k
#bins in 7y N, 5
# bins in p 10

# cores

Used a test problem DTLZ1

Verified scaling following MN? and convergence to
true front

~1s/call with 10* size!

Smart pipelines of 11 variables and 3 objectives
needs ~ 10000 evaluations to converge

~10k CPUhours / pipeline



"NaViqate" Pa reto Front At each point in the Pareto front

corresponds a design
Can take a snapshot any time
during evaluation

Updated Pareto Front at time t

b
8

A Final Evaluation Point
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Single VS Double Gaussian

—§- single Gaussian Fit

. —§— Double Gaussian Fit

10 <p<125GeV/c
00 < n<05
[los < n<10
[10 < n<15

arb units

sl ey I G
%.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

dp/p

Figure 6: Fit strategy: a double-Gaussian fit function is utilized to extract
the resolutions. Such a fit function provided good reduced y? and more sta-
ble extractions compared to single-Gaussian fits. The resolution is obtained
as an average of the two o’s weighted by the relative areas of the two Gaus-
sians according to Eq. (3). The figure represents the results corresponding to a
particular bin in 7 and p.




Evolution

Black points represent the first
simulation campaign, and a preliminary
detector concept in phase-| optimization
which did not have a developed support
structure;

Blue points represent the fully
developed simulations for the final
ECCE detector proposal concept; red
points the ongoing R&D for the
optimization of the support structure.

Compared to black, there is an
improvement in performance in all n bins
with the exception of the transition
region, an artifact that depends on the
fact that black points do not include a
realistic simulation of the material
budget in the transition region!

In the transition region, it can be also
appreciated the improvement provided
by the projective design

O<hl<1
PWG requirement
—@— T Simulation Campaign
—=@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1.5<hi<25
PWG requirement
—@— T Simulation Campaign
—=@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1<hli<15
PWG requirement
—@— T Simulation Campaign
—=&— ECCE Simulation 2021
—=&— ECCE Ongoing R&D

1t simulation (black)
not realistic!

25<inl<3.5
PWG requirement
—=@— T Simulation Campaign
—=@— ECCE Simulation 2021
—=&— ECCE Ongoing R&D




Validation

Reconstruction Efficiency Performance evaluated after optimization process

Reconstruction Efficiency | § 1 35<n<3 { i B<n<-25 (both designs) using standard analysis procedures
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Interactive Navigation of Pareto front

Select the Method of Optimization

Multi Objective Bayesi ization GEANT4 Visualization of the design

e Visualization of results from
approximated Pareto front

e Exploration in a multiple objective
space

Design Parameters Table

e Facilitate study/comparison of
trade-off solutions

® Momentum res ® Theta res

e Here MOBO is used using
FinerEvaIua(ionofMomemumresoluﬁonfor'iel\(lecledDesrgn BOTO rCh/ AX (benefit from Strong
] f i community support — Facebook)

K. Suresh (U. of Regina)

L
‘* ‘l CF, Z. Papandreou, K. Suresh, Designing EIC with the assistance of Al: strategies and perspectives (in progress)


https://ai4eicdetopt.pythonanywhere.com

Plans

e This work was accomplished during the detector proposal and provided valuable
insights in a multi-dimensional design space with multiple objective characterizing the
detector performance (e.g., KF efficiency, momentum and angular resolution)

e This combined with other aspects like risk mitigation and costs reduction helped
designing the ECCE reference detector. This reference is the new baseline for a new
optimization phase as we are also moving towards the collaboration formation

e Consolidation of technology choice and optimization of design will be supported by:
o Always more realistic effects integrated in the simulations, e.g., beam background

o Integration of reconstruction algorithms and utilization without truth information (e.g. track finding for
tracking) — N.b., reconstruction should be “flexible” against changes in design

o Explore physics-driven optimization — include physics observables/full analysis as objectives
o Extension of the design optimization to a larger system of sub-detectors, e.g., tracker + PID

m Previous studies of dRICH show how this detector critical for PID in the hadronic endcap can
benefit from Al-assisted design



Particle Identification with Cherenkov

electrons/photons m/Kl/p
-3.5t0-2.0 Backward T suppression up to 20 MeV
=
<10 GeV/c
-2.0to-1.0 Backward T suppression up to 50 MeV
1:1E-3 - 1:1E-2
<30
-1.0to0 1.0 Barrel T suppression up to 100 MeV <6 GeVic
=
1.0t0 3.5 Forward 3oe/mupto15 50 MeV <50 GeV/c
GeVic

e Cherenkov detectors form the backbone of PID at EIC

o  Currently, all EIC detector designs use a dual radiator ring-imaging Cherenkov
detector (RICH) in the hadron direction, a DIRC (detection of internally reflected i il
Cherenkov light) in the barrel, and a modular RICH in the electron direction. B g i ,

o  Simulating these detectors is typically compute expensive, involving many photons A REE 4
that need to be tracked through complex surfaces. % I TS

o  All three rely on pattern recognition of ring images in reconstruction, and the DIRC is

the one having the more complex ring patterns!



dRICH . ante—proposal aerogel (4 cm, n(400 nm): 1.02)

+ 3 mm acrylic filter
E. Cisbani, A. Del Dotto, CF*, M. Williams et al. *+gas (1.6m, n(CZFB): 1.0008)

"Al-optimized detector design for the future Electron-lon Collider: the dual-radiator RICH case." PhotoSensor
Journal of Instrumentation 15.05 (2020): P05009. T

. K
Aerogel + Filter,

0[Gev] 5

charged
particle

0
]
|
|
|
|
E
|

mRICH DIRC dRICH g dRICH STOF(20ps)  dE/dx

aerogel gas STOF(10ps) ~looem

Sector Side View
e  Continuous momentum coverage. /|
e Simple geometry and optics, cost effective. ‘ | Gasvolume
e Legacy design from INFN, see EICUG2017

e 6 Identical open sectors (petals)
e  Optical sensor elements:

8500 cm?/sector, 3 mm pixel
e Large focusing mirror

1

"\ PhotoSensor

—_ Aerogel + Filter !



https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf

dRICH

ante-proposal

Two radiators with different refractive indices for continuous
momentum coverage.

Simulation of detector and processes is compute-intensive

Legacy design from INFN (EICUG2017).

gas

particle

aerogel

T
9o
[
3
|
-
o
z
g
[ ]

Spherical Mirror

0[Gev] 5

aerogel (4 cm, n(400 nm): 1.02) + 3 mm acrylic filter + gas (1.6 m, n(C,F): 1.0008)

Define design parametrization and space: optics + geometry

parameter description range [units] tolerance [units]
R mirror radius [290,300] [cm] 100 [pm]
posr radial position of mirror center [125,140] [cm] 100 [pm]
posl longitudinal position of mirror center | [-305,-295] [cm] 100 [pm]

tiles x shift along x of tiles center [-5,5] [cm] 100 [pm]
tiles y shift along y of tiles center [-5,5] [cm] 100 [pm]
tiles z shift along z of tiles center [-105,-95] [cm] 100 [um]
Naerogel aerogel refractive index [1.015,1.030] 0.2%
tacrogel aerogel thickness [3.0,6.0] [cm] 1 [mm)]

[K8x) — Bx)ll/Ny

Come up with a smart objective; No = 5.2
study / characterize properties %o
(noise, stats needed etc):
simulation + reconstruction

= [t o]

Optimization framework (embed convergence criteria)

EARLY STOPPING | atkll

yes

check /D tell {x}.y [ OPTIMIZATION+ML/DL/RL

N |

monitoring

BO WRAPPER

control convergence

updated model

ANALYSER
nsincton)
FOM i k
FOM j r

(rec

FOM j

jetector)

SIMULATION

(ohysic

N detectors

(5]

—{ settings x
—‘ settings x
L—{ setings x

STARTING
CONFIGURATION

aerogel (optimal)
gas (optimal)
+ aerogel (legacy)
+ gas (legacy)

Analysis + Validation

—
o,

10!
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20

principled vs random momentum [GeV/c]



https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf

dRICH: ante-proposal
e Ranges depend mainly on mechanical constraints and

e Dedicated studies to characterize the noise as this is optics requirements. These requirements can change in the
an optimization of a noisy function next future based on inputs from prototyping.

parameter description range [units] tolerance [units] J
R mirror radius [290,300] [cm] 100 [pm]

pos r radial position of mirror center [125,140] [cm] 100 [pm)] ‘

pos 1 longitudinal position of mirror center | [-305,-295] [cm] 100 [pm)] ‘

tiles x shift along x of tiles center [-5,5] [cm] 100 [um]

w
@

w
N

RMS( oiP* ) [mrad]
w

tiles y shift along y of tiles center [-5,5] [cm] 100 [pm)]
tiles z shift along z of tiles center [-105,-95] [cm] 100 [pm)]
Naerogel aerogel refractive index [1.015,1.030] 0.2%

13
©

4
-]

E ! 1 1 o 27 ! 1 1 1 o .
500 1000 1500 2000 2500 500 1000 1500 2000 2500 tacrogel aerogel thickness [3.0,6.0] [cm] 1 [mm]

Number of tracks Number of tracks

E[cnﬁ o n lp’os"f [cm] = 7 o V:bosrl:[rcm']ﬂ - 7 tiles x [cmi

Haep(x) Hep(x) § Har(x) g Hep(x)

| 1 ! 1 .
500 1000 1500 2000 2500 500 1000 1500 2000 2500
Number of tracks Number of Tracks

tiles y [cmj ‘ " ‘t‘iles z [cmj ' ’ n(aer.)x ) ) : t-(aer.l) [crﬁ] C

Larger than the construction tolerances on each parameter.




EICUG AL WG (AI4EIC)

First Workshop on September 2021 at CFNS

Next workshop on October 10-14 2622 at W&M

https://eic.al

Workshops = e

Al FOR THE ELECTRON ION COLLIDER - EVENTS [ 4E IC

AI4EIC - October 10-14, 2022

2nd General Workshop on Artificial Intelligence for the Electron lon Collider
Venue: William and Mary

Contacts:

Meetings

support@eic.ai

AI4EIC Meeting on Detector Design:
https://indico.bnl.gov/event/16328/

July 20, 9-11am ET

I \ AI4EIC-exp - September 7-10, 2021
{ Center for Frontiers VA entenforkrontierinuciearScence (CRNS ‘
in Nuclear Science ~ ©'o°"ze* ABos it



https://eic.ai/workshops
https://indico.bnl.gov/event/16328/
https://eic.ai/events

Conclusions

Al can assist the design and R&D of complex experimental systems by providing more
efficient design (considering multiple objectives) utilizing effectively the computing resources
needed to achieve that.

EIC can be one of the first experiments to be designed with the support of Al and the ECCE
reference detector has been already designed taking advantage of a multi-objective
optimization approach and a complex parametrization of its design which takes into account
constraints.

This workflow can be further utilized to optimize the reference detector; we anticipate roughly
1M CPU-core hours/year for these studies which will be extended to include

o More realistic effects in the simulation and reconstruction techniques

o Alarger system of sub-detectors to include, e.g, detectors like the dRICH, in addition to
the tracker system

Design optimization pipelines of increased complexity can take advantage of distributed
computing.



