Overview

- June 13-26, 2022; initially day shift, main users
 - At Fermilab: Bob & Martin (first week), Sanghwa, Junqi, Mark, Ali (second week)
 - Close to Fermilab: Alexander
 - Remotely: Craig, Deb
- First week: commissioning
 - Tracker, trigger, NIM logic, DAQ, computing, etc.
 - LAPPD tile 126 (full glass, 20μm pores MCPs) & old L01e board (8x8 field of 6mm square pixels)
- Second week: the actual measurement program
 - LAPPD tile 136 arrived (full glass, 10µm pore MCPs)
 - Switched to the new L03c board (320 4mm square pixels in a "circular band" configuration)
 - Timing (direct beam) and imaging (aspheric lens)

Picture gallery

First week: commissioning

Use photons produced in the LAPPD window

- 20 μm MCP pore LAPPD tile 126
- 8x8 pixel field (6mm square pads) on L01e board
- Tracker and V1742 digitizers are shown to work in sync
- LAPPD clustering code resurrected

Monday, June 20

Aspheric lens in "unfavorable" configuration

- Continue with tile 126 till Wednesday
- Identify single photon clusters produced by the aspheric lens
- 10 μm LAPPD tile 136 (full glass body) sent out by Incom yesterday ...
- ... and Mark is coming back to Fermilab tomorrow

Tuesday, June 21

- Issues with a cross talk in the L03c board: the signal produced by a passing particle in the LAPPD window is simply too strong ...
- ... and a few % trace-to-trace crosstalk matters

When replacing the LAPPD, need to ground the central area

Wednesday, June 22

- Mark, Sanghwa and Ali installed and HV conditioned the new tile 136
- Along the way shortened to ground the central 4x4 pixel area, as agreed upon during the meeting yesterday
- Signal amplitudes are somewhat low
- Replaced the failing XYZ stage controllers by the new ones with a display; use in a manual mode
- DAQ misbehaves in a number of ways; remotely controlled power strip for the VME crate installed
- Yet a Z-scan with the lens is being taken by Sanghwa

Thursday, June 23

Aspheric lens in a "favorable" configuration

- It turned out that the lens in a "direct" configuration produces a long tail in a radial distance distribution, which can only be fixed by screening half of it (that's why people used to suffer in similar configurations)
- Since LAPPD was not conditioned to take quality timing data (photocathode voltage too low), considered to rotate the setup
- By the time we re-started the Z-scans, linac went down
- CaF₂ radiators were not delivered to Fermilab yesterday

Image gallery (aspheric lens; no acrylic filter)

Aspheric lens in a "favorable" configuration

- Imaging part of the program:
 - Observed blurred, asymmetric, but well-populated rings produced by the aspheric lens
 - Installed the acrylic filter, at an expected cost of ~80% p.e. yield loss
 - Since then, cannot see a convincing ring picture any longer
- Timing part of the program (p.e.'s from the LAPPD window):
 - CaF₂ radiators arrived and were installed on both Argonne Planacons
 - After re-alignment observe few hundred mV signals on a "good" Planacon
 - "Procedural" residuals between channels 06 & 07 σ ~30ps
 - Relative timing [06 -> 04] to the working Planacon only σ > 120ps
 - The second Planacon shows very poor performance

Saturday, June 25

🔶 4.0 mm

Distance	Shift	Ring radius	Radial resolution
24.5 mm	0	~32.9 mm	~660 μm
27.0 mm	+2.5 mm	~34.9 mm	~350 μm
29.5 mm	+ 5.0 mm	~37.0 mm	~180 μm
31.0 mm	+6.5 mm	~38.2 mm	~125 μm
31.9 mm	+7.4 mm	~38.9 mm	~130 μm

- Considered to spend half a day on a full "direct beam hit" scan along the pad ring circumference:
 - Ultimate in situ channel-to-channel delay calibration
 - Small but valuable statistics on two-particle events (no Planacon reference needed)

Reference tracker resolution

• Position differences: a Gaussian fit to the data shows a resolution of ~50-60 um.

Hints for timing resolution in a multi-photon mode

Other materials & discussion

- Google doc link with the data file description
- elog on our FTBF PC also has useful information
- Ali: alignment file?
- Data analysis: volunteers wanted!
- Strictly speaking, *none* of the planned measurements was performed
- What (and when) should we focus on next?