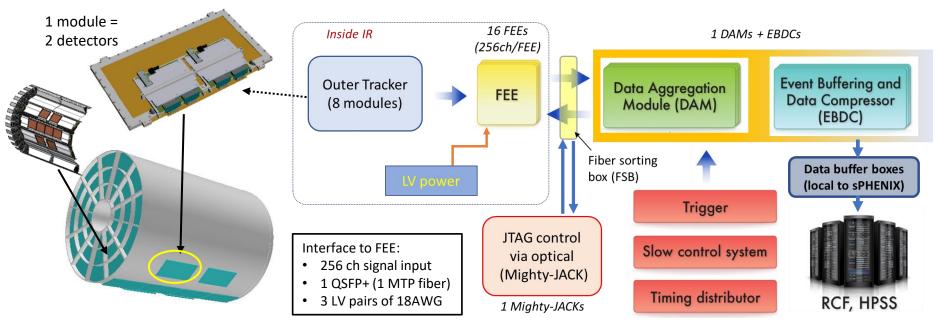


# ALD review of sPHENIX TPOT Electronics -

## Takao Sakaguchi Jul 20, 2022 BNL

1

#### Topics to be covered in this talk




- Front and back-end electronics for signal readout
  - Boards: FEE, DAM+EBDC, Mighty-JACK
- Interface to the detector, optical fiber cabling, and fiber sort-out-box
- Low-voltage (power supplies, cabling), High Voltage
- Cost and Schedule
- Status and Highlight
- Summary

#### **TPOT readout overview**



- Readout scheme is the same as the one for TPC
  - Digitize analog signal from the detector, and send them to backend electronics (DAM) via optical cable
  - 2 FEEs (512 channels) per module, 16 FEEs in total (vs 624 FEEs for the TPC), 1 DAM+EBDC
    - Input capacitance (C<sub>det</sub>) per channel (or strip): 150-200pF (vs 18pF for the TPC)
  - 1 JTAG control of FEE over optical cards (Mighty-JACK cards with fiber sort-out-box)



## Technical overview of boards

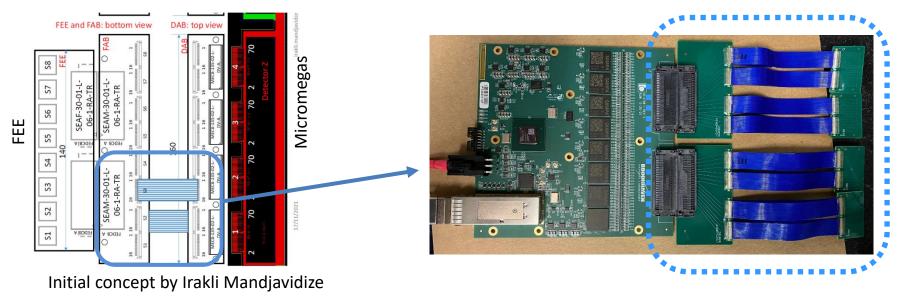


- FEE (256 channels per board, 20W heat)
  - Continuous readout mode
  - 8 SAMPAv5 + 1 FPGA + 1 QSFP (4 Tx/Rx)
    - SAMPA: 32 of (CSA + Shaper + FADC + DSP)
    - Optical: 2 Data links (4+ Gbps/line) + 1 JTAG
  - 80/160 nsec shaping, 30/20mV/fC gains
  - ADC Sampling: 4.7/9.4/18.8MHz
  - FEE works fine at 1.5T and 100krad

To Might-JACK I Tx/Rx FPGA FPGA From DAM 1 Rx SAMPA's (on one side) TO DAM 2 Tx's

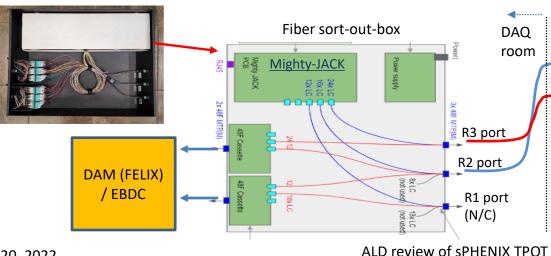
- DAM/EBDC
  - ATLAS FELIX v2.1 card (PCIe Gen3 x16), hosted by a commodity server.
    - 48 Optical Tx/Rx (10+ Gbps/line) and Xilinx Ultrascale FPGA (XCKU115)
  - Reducing data via triggering and compression
- Mighty-JACK
  - JTAG connection to FEE over optical fiber
    - 10 Xilinx Artix-7 FPGA with 40 Optical Tx/Rx

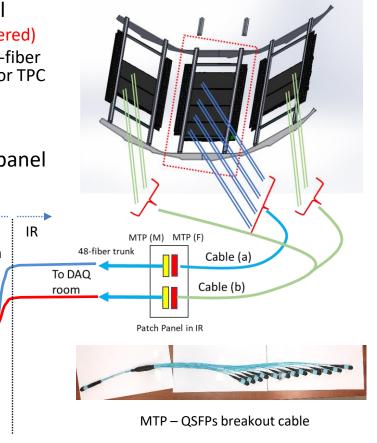







#### Detector interface cable





- To interface with the FEE, an adaptor cable between Micromegas and FEE is necessary
  - MEC8 connector at TPOT side, and SEAM connector at FEE side (both from SAMTEC)
- Designing with a SAMTEC engineer started in Nov 2021
  - The FEE side has two type of boards, mirror of each other.
  - All the cables (25 + 25) have been delivered. All of them have been tested fine.



## Technical overview (fiber layout)

- QSFP+ fibers from each FEE to the fiber patch panel
  - 10 QSFP+ fibers from North and South each (yet to be ordered)
  - At the patch panel, QSFP+ cables are interconnected to 48-fiber MTP trunk cables using the breakout cables below made for TPC
    - (a): 1 MTP <-> 8 QSFPs, (b): 1 MTP <-> 12 QSFPs
  - All the breakout cables have been delivered
- Two 48-fiber MTP trunk cables run from the patch panel to the fiber sort-out-box in the DAQ room





SPHENIX

## Low/High Voltages

- TPOT uses spare channels of TPC LV system
  - Cable lengths from LV rack to TPOT modules have been fixed. Cable delivery will be completed within a month (together with those for TPC)
- TPOT uses both positive and negative high voltages.
  - 1 negative HV for electron drift per detector
  - 4 positive HVs for amplifications per detector
- 8 modules (= 16 detectors) need 16 neg. and 64 pos. HVs
  - We selected a CAEN HV system (delivered)
    - One main frame + two 24-ch neg. + four pos. modules (+/-3kV, 1mA in max.)
  - HV cable lengths and routing are being worked on.
  - HTML-based control software already exists.
  - Interface to sPHENIX OPC server is in progress

Conversion/Drift Gap

Readout Strips

**Resistive Strips** 





450 um

Drift Electrode

E Field

-1000V



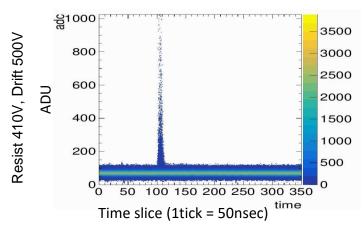


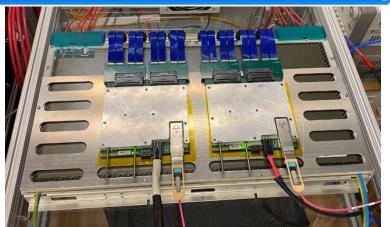


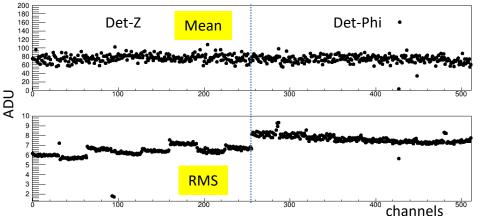
# **Schedule Drivers**



- TPOT electronics relies on surplus from TPC production
  - 700 FEEs have been fabricated and are under testing. 624 FEEs will be used for TPC
  - All the FELIX boards have been produced. They are under testing
    - Leftover from TPC will be 76 FEEs and 6 FELIXs.
- Current initial test of the FEEs tells that the yield is 90-95%
  - All the failed boards have same symptom. They are related to the SAMPA power-on procedure.
  - We are working on solving the issue mainly by updating the FEE FPGA firmware.
    - Once successful, the end yield will be very close to 100%
- Items subject to schedule drivers include:
  - Engineering of HV cables, and optical fibers (to be finished in ~2 weeks).


## **Cost Drivers**





| Item                     | Estimated | Actual | comments             |
|--------------------------|-----------|--------|----------------------|
| FEE boards (16 FEEs)     | \$7k      | \$0    | Use surplus from TPC |
| One set of FELIX+EBDC    | \$14k     | \$0    | Use surplus from TPC |
| Mighty-JACK board        | \$2k      | \$0    | Use surplus from TPC |
| Fiber sort-out-box       | \$3k      | \$0    | Use surplus from TPC |
| Signal interface cable   | \$21k     | \$21k  | Delivered            |
| HV modules and mainframe | \$37k     | \$37k  | Delivered            |
| HV cables (100, SHV)     | \$17k     | \$17k  | To be delivered      |
| LV power system          | \$2k      | \$0    | Use surplus from TPC |
| Optical fibers           | \$3k      | \$3k   | To be delivered      |
| Total                    | \$106k    | \$78k  |                      |

## **Status and Highlights**

- First production detector has been assembled with a frame, FEE, and transition cables.
- Pedestal of all the channels have been measured with this setup
  - Noise at 160nsec, 20mV/fC is ~7 ADU (= ~<u>4500 e)</u>.
  - Only ~3 out of 512 channels have issue (0.6%)
- We confirmed that there is no oscillation from a comic ray test.







Jul 20, 2022

ALD review of sPHENIX TPOT

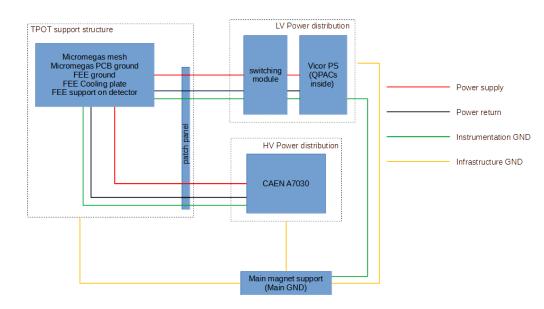
SPHENIX

#### **Issues and Concerns**

- SPHENIX
- Most of the items have been procured, but there are few items yet to be procured
  - Given the global supply chain issue, we will order as soon as possible, and keep watching the situation
- FEE production yield should be more than 92% to cover needs of both TPC and TPOT (624 + 16 = 640, out of 700 assembled in total)

#### Summary




- Technical designs are all fixed.
  - Most of the items have been procured.
  - Cost: \$78K
- Prototype Micromegas has been connected to FEE and is under testing
  - Noise has been measured for fully-assembled TPOT setup.
  - Cosmic signals have also been observed
  - No worrisome oscillation is seen despite 10x higher capacitance compared to TPC.
- All the FEEs will be tested ready for TPC by mid-Aug 2022
  - Current yield of the FEEs is 90-95%. The symptom are same for all failed boards and are related to SAMPA power-on procedure.
    - We are working on solving this issue mainly by updating the FEE FPGA firmware.
  - No issue in terms of schedule



# Back Up

#### Technical overview (Grounding)

- TPOT support structure and racks are connected to infrastructure ground
- Instrumentation ground is brought to the detector via LV power return.
- HV power lines are floating. Power return is connected to the instrumentation ground at detector.
- FEE PCB, FEE cooling plates, FEE support, Micromegas mesh and PCB ground are all connected to the instrumentation ground at detector
- Detector ground (= instrumentation GND) isolated from support structure (= infrastructure GND)



Hugo Pereira Da Costa

### **FEE Technical Overview**

#### Continuous readout mode

- Use of 8 SAMPA chips per FEE (256ch/FEE)
  - SAMPA = CSA + Shaper + FADC + DSP
- Use of newly developed SAMPA v5 that has 80nsec shaping time option.
  - 160nsec is also available
  - SAMPA v5 chip production is finished.
- FPGA receives data from SAMPA and sends to optical link, and processes clock and slow control data from DAM.
  - JTAG is now implemented over optical link.
  - Two data links are available
- ADC clock will be 4.7, 9.4 or 18.8 MHz, as we base on the RHIC beam-crossing clock.

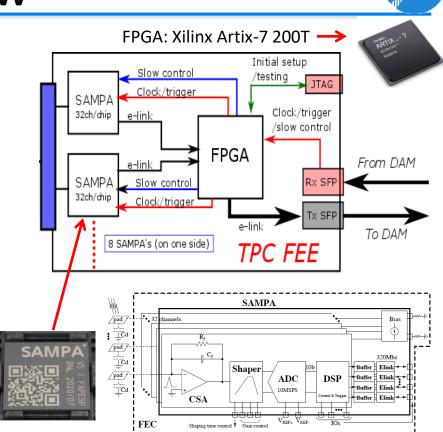


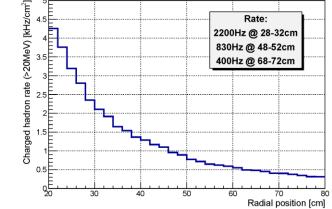

Figure 6.4: Schematic of the SAMPA ASIC for the GEM TPC readout, showing the main building blocks.

#### ALD review of sPHENIX TPOT

SPHE

#### Single event effect on FPGA

- Xilinx Artix-7 7A200T FPGA
- Assuming all CRAM bits are significant
- Used AMPT event generator (Au+Au 200GeV @100KHz) to estimate charged hardron rate at particular positions.
- Triple modular redundancy (TMR), memory scrubbing is implemented


**Table 2.7:** Soft error for sPHENIX TPC FEE case (using Artix-7 7A200T).

| R-position | # of FEE | flux [Hz/cm <sup>2</sup> ] | error/FEE [ $s^{-1}$ ] | error/sector $[s^{-1}]$ |
|------------|----------|----------------------------|------------------------|-------------------------|
| 28-32cm    | 120      | 2200                       | $1.6 	imes 10^{-6}$    | $1.9 	imes 10^{-4}$     |
| 48-52cm    | 192      | 800                        | $5.8 \times 10^{-7}$   | $1.1 	imes 10^{-4}$     |
| 68-72cm    | 288      | 400                        | $2.9 	imes 10^{-7}$    | $8.6 	imes 10^{-5}$     |

#### One error in 45 minutes as whole TPC

 $h^{*\prime \text{-}}$  rate @ TPC FEE (FPGA) in 100kHz Minb Au+Au

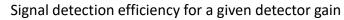
SPHE



25kRad TID for 5 years. 1.2 10<sup>12</sup> 1MeV-eq n/cm<sup>2</sup>

ALD review of sPHENIX TPOT

### Expected signal and efficiency


Irakli Mandjavidize TWEPP16 Saturation Noise Analogue FE chips: 20mV/fC Neg Ch8->15 <del>ത</del> 3000 Ch 8 2500F O Ch 9 Ch 10 ¥ 2000-Ch 11 Dynamic Cont Ch 12 range 1500 - A Ch 13 10-bit ADC Ch 14 1000 - 7 Ch 15 Typical signal (S) 500 Smallest S/N S/T Signal detection ZS threshold (T) signal

120

Input Capacitance [pF]

140

- Mean E<sub>dep</sub> is 500 eV. (initial N<sub>e</sub> is 18.6)
  - Highest input signal is 11 [fC]
  - Primary shaping time and gain choice: 160nsec and 20mV/fC
  - Saturation possibility due to a long tail of E<sub>dep</sub> distribution:
    - 3.7% cases @ 8 000 detector gain
    - 5.8% cases @ 10 000 detector gain
- Capacitance per strip: 150-200pF
  - 10x of that of the TPC
  - Measurement of noise exists at 140pF
    - → ~ 3500 e@200pF = 0.56 fC
  - Need to confirm that FEE works at this capacitance
- Zero-suppression threshold (T) to noise ratio determines minimum detectable E<sub>den</sub>
  - Noise is independent of MM gain.
  - Working point has been identified in terms of MM gain, T and N.



100

80

Red: uncomfortable

T/N Noise rejection

| Gain0       | S / N      | T / N | Min energy<br>eV | Min detectable energy / full energy<br>% |
|-------------|------------|-------|------------------|------------------------------------------|
|             | 3          | 50    | 9.9              |                                          |
| 8 000       | 8 000 19.6 | 4     | 66               | 13.3                                     |
|             |            | 5     | 83               | 16.6                                     |
|             |            | 3     | 40               | 8.0                                      |
| 10 000 24.5 | 24.5       | 4     | 53               | 10.6                                     |
|             |            | 5     | 66               | 13.3                                     |

Noise (N)

#### ALD review of sPHENIX TPOT

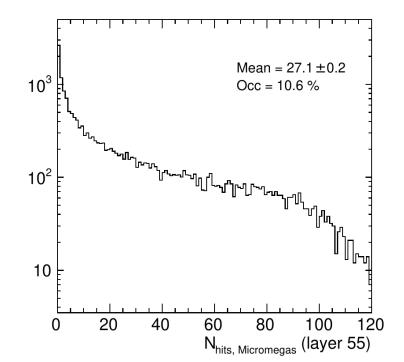
20

40

60

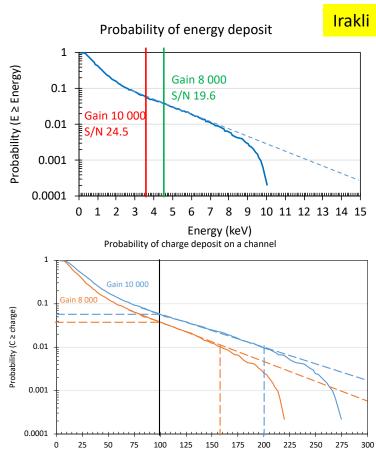
#### Jul 20, 2022

retained




#### **Expected data rate**

- Data rate assumption: 160nsec shaping, 10MHz sampling
  - Resistive strips would make charge collection slow, which prefers 160nsec shaping
- One strip signal = 5 hits (in timing direction) \* 10 bits (ADC).
- # of total channel: 256 \*3\*8 = ~6k
- Per event data rate: 6k \* 0.1 (occupancy) \* 50 (bits) \* 1.4 (overhead factor) = 42k bits/event
- At 100kHz: 4.2Gbits/s → < 0.5% of TPC data volume</li>




Hugo Pereira Da Costa



### **Expected** signals

- Mean E<sub>dep</sub> is 500 eV, mean initial N<sub>e</sub> is 18.6C
  - Charge per hit: 18.6 \* 8000 (gain) \* 1.6x10<sup>-19</sup> = 23.8 [fC]
  - One hit spreads over a "cluster" of ~5 strips
  - Strip with max amplitude gets ~65% of cluster charge
  - About 71% of the charge reaches to SAMPA
  - −  $\rightarrow$  Highest input signal is 11 [fC]
    - Max input: <u>67 fC@30mV/fC</u>, <u>100 fC@20mV/fC gain</u>
  - Primary gain choice: 20mV/fC
- Because of a long tail of E<sub>dep</sub> distribution, SAMPA might be overrun in:
  - 3.7% cases @ 8 000 detector gain
  - 5.8% cases @ 10 000 detector gain
- Three saturation scenarios
  - Signal hitting max of dynamic range of ADC
  - Pulse pile-up hits CSA ceiling (30nA) at high rate
  - If a strip is shared by multiple clusters, charges are added up, resulting in saturation.
    - Last two are negligible, but it needs confirmation



Charge (fC)

SPHE

## **Cost Drivers**

SPHENIX

- FEE board production (16 FEEs): \$7K (zero for now)
  - PCB production (\$2k) + partial turnkey assembly (\$5k, including RC-parts to be procured by vendor).
  - Enough non-RC parts are already in hands to cover production for TPOT.
- 1 FELIX card + 1 EBDC: \$14k (zero for now)
- 1 Mighty-JACK board: \$2k (zero for now)
- 1 fiber sort-out-box: \$3k (zero for now)
- Signal interface cable: \$21k (SAMTEC)
- HV modules and mainframe: \$37k (CAEN)
- HV cables (SHV): \$2k
- LV power distribution (Only cables): \$2k (zero for now)
  - Cable/connector purchase and cable production (harness) at a vendor
- Optical fibers: \$2k
- Total net cost at this moment: \$62K