Adaptive Experimentation to assist detector design at EIC

from ECCE to ePIC and beyond

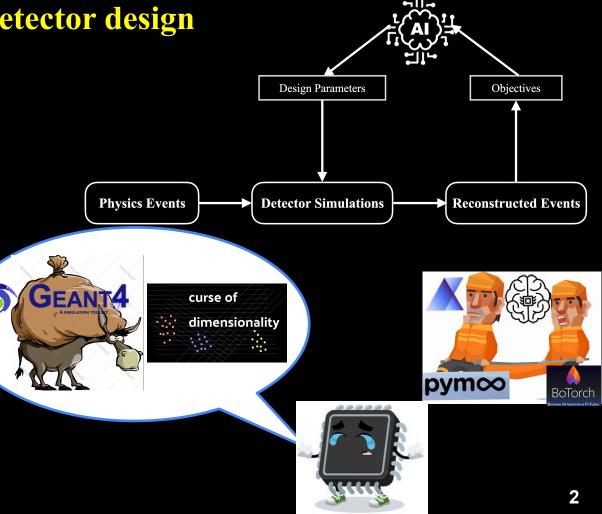
Cristiano Fanelli 1,2, Zisis Papandreou 3, Karthik Suresh 3

¹ College of William and Mary, VA, USA
 ² Thomas Jefferson National Accelerator Center (TJNAC), VA, USA
 ³ University of Regina, SK, Canada

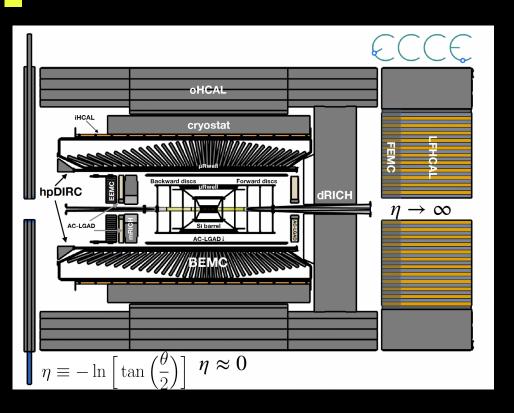
Optimization of EIC Detector design

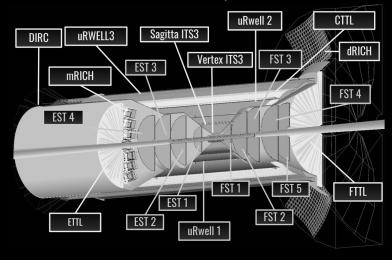
GEANT4 simulations are typically computation intensive.

In order to explore a multidimensional parameter space in a multidimensional objective space, AI can assist in this search in a more efficient way.



Example: The ECCE Detector - the Tracking System





AI been used to steer the design

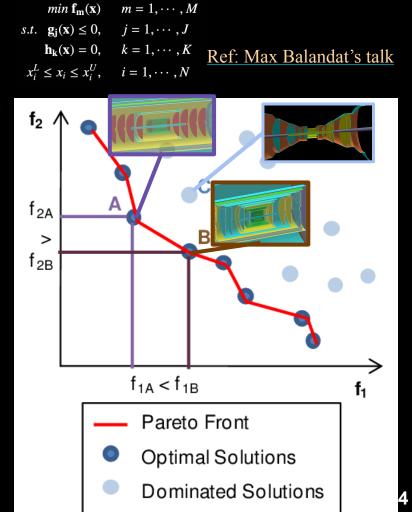
arxiv:2205.09185, arxiv:2203.04530

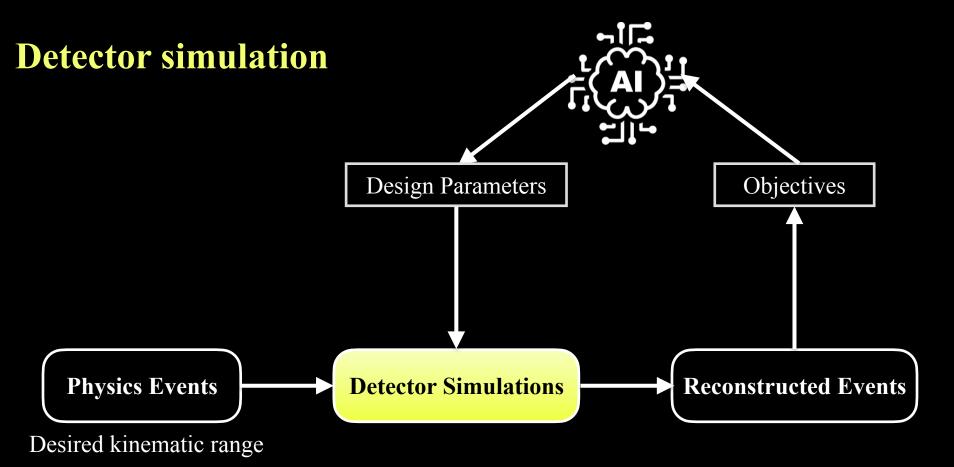
The tracking system reconstructs charged particle tracks. It combines different technologies.

ECCE design was chosen as reference. Lots of updates/progress from Tracking WG (ePIC) since then.

Multi Objective Optimization

- Multiple "objectives", e.g., weighted avg momentum resolution, θ resolution, KF efficiency, projected θ resolution at PID location. Objectives could be conflicting. (This can be extended to other objectives, e.g., physics)
- Pareto-optimal solutions. Locus of points in Objective Space which are non-dominating to one another.
- Leverage on SOTA open source tools to solve complex Multi Objective Optimizations problems. Adapt these tools and integrate within GEANT4 based simulations for efficient detector design

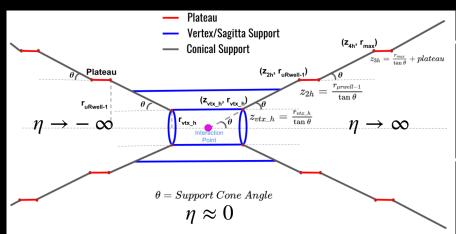




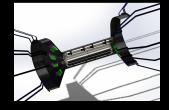
Parametrization

Parametrization is an essential part of an automated optimization:

- explores different designs
- avoids overlaps of volumes
- encodes constraints

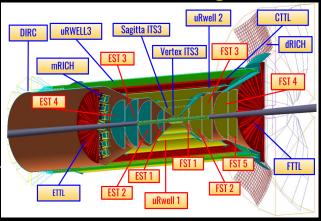


$$\eta \equiv -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$

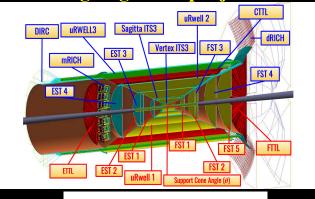


Implementation of support structures with realistic material budgets

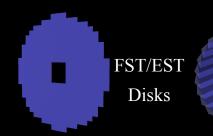
Reference design



Ongoing R&D projective



Constraints



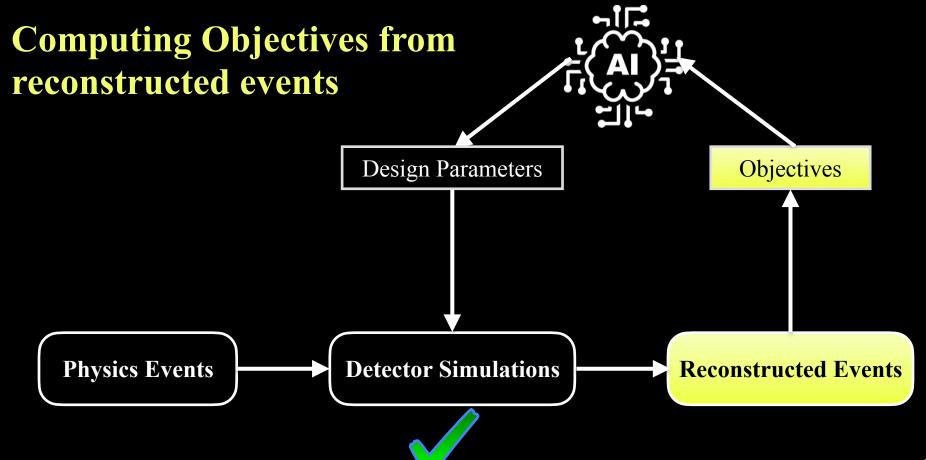
Barrel Si

- Design Parameters $(O(N) \approx 10)$
 - Based on an extensive parameterization.
- Constraints being used (n_const ≥ 3)
 - HARD The minimum distance between 2 disks should be >= 10 cm (giving room for services)
 - SOFT The Rmax-Rmin for the disks have to be multiple of 3.00 cms and 1.8 cms (Tiling of pixels)
- Overlaps checks
 - GEANT4 unstable when overlaps are detected in volumes.
 - Overlaps are checked for every design explored and penalized.

sub-detector	constraint	description
EST/FST disks	$min\left\{\sum_{i}^{disks}\left \frac{R_{out}^{l}-R_{in}^{l}}{d}-\left\lfloor\frac{R_{out}^{l}-R_{in}^{l}}{d}\right\rfloor\right \right\}$	soft constraint : sum of residuals in sensor coverage for disks; sensor dimensions: $d = 17.8$ (30.0) mm
EST/FST disks	$z_{n+1} - z_n >= 10.0 \text{ cm}$	strong constraint: minimum distance between 2 consecutive disks
sagitta layers	$min\left\{\left \frac{2\pi r_{sagitta}}{w} - \left\lfloor\frac{2\pi r_{sagitta}}{w}\right\rfloor\right \right\}$	soft constraint : residual in sensor coverage for every layer; sensor strip width: $w = 17.8 \text{ mm}$
μ RWELL	$r_{n+1} - r_n >= 5.0 \text{ cm}$	strong constraint: minimum distance between µRwell barrel layers

Layer

Extensive details at arXiv:2205.09185



Implementing Objectives

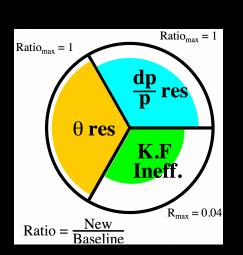
- Objective functions Average of Weighted Averages (n_obj ≥ 2)
 - Momentum resolution dp/p
 - Theta resolution $d\theta/\theta$
 - **Oracle Of Section 2.1 Projected d** θ/θ **at PID location.**
 - Kalman Filtering inefficiency
 (improving the tracking reconstruction ability of the algorithm)
- **Validation** of the solutions
 - Validate by comparing optimal vs baseline $d\varphi$ resolution, vertex resolution and reconstruction efficiency

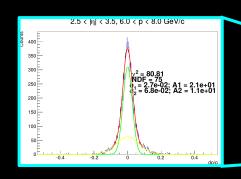
Weighted sum with errors along η

Implementing Objectives

Robust fitting procedure in fine-grained phase-space

Propagate uncertainties in fits throughout



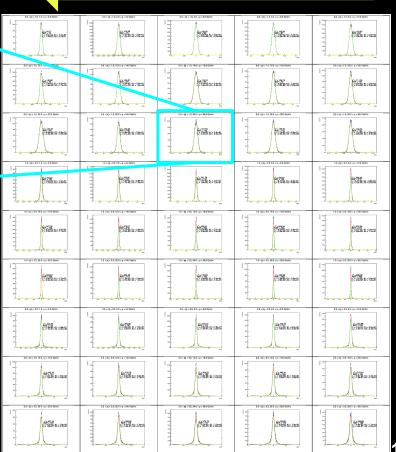


$$\bar{x_{\eta}} = \frac{\sum_{p} x_{p} w_{p}}{\sum_{p} w_{p}}$$
Avg in a η bin $\sum_{p} w_{p}$

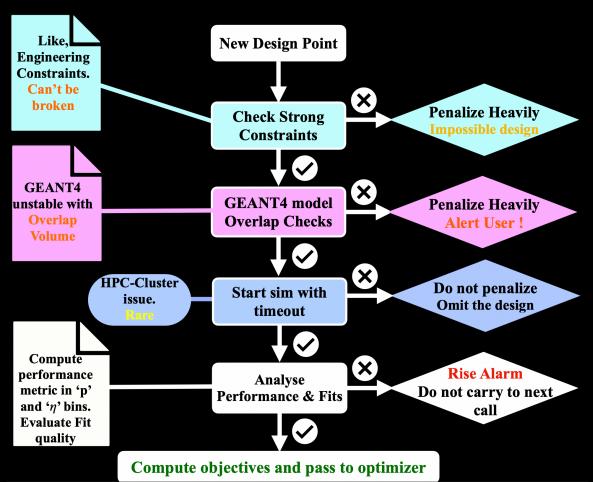
$$\bar{x} = \frac{\sum_{\eta}^{N_{\eta}} \bar{x_{\eta}}}{N_{\eta}}$$

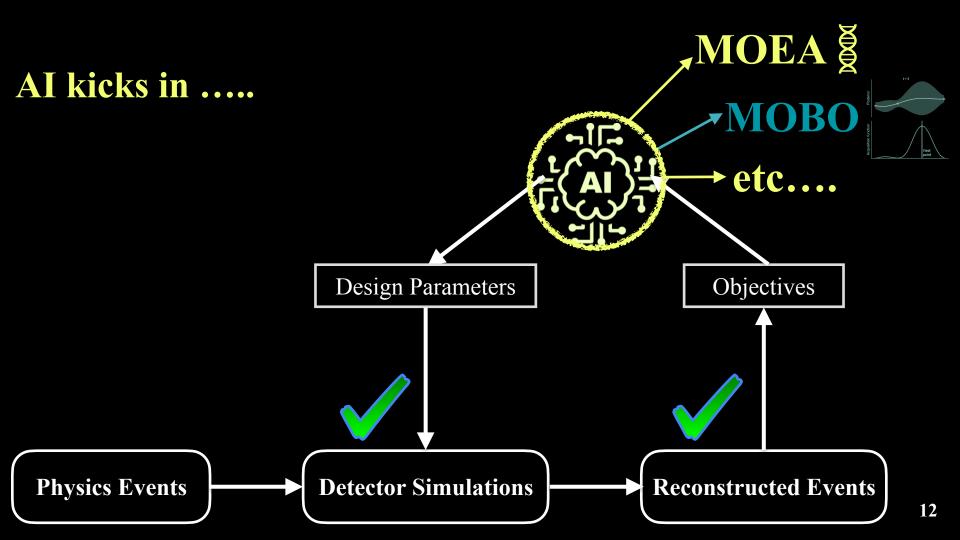
Weighted

Weighted sum with errors along η

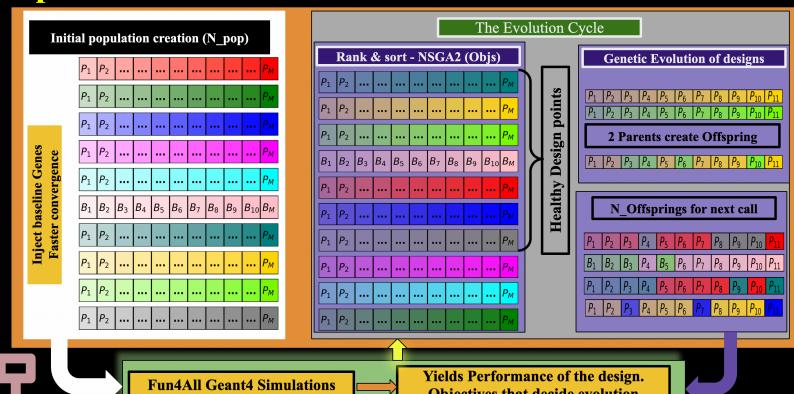


Checks performed





MOEA Pipeline



2 Level Parallelization !

Objectives that decide evolution

Comprehensive checks ensures feasibility of design

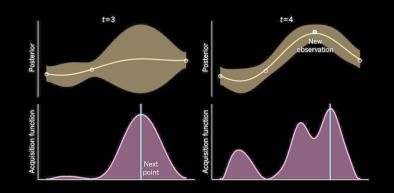
MOBO Pipeline

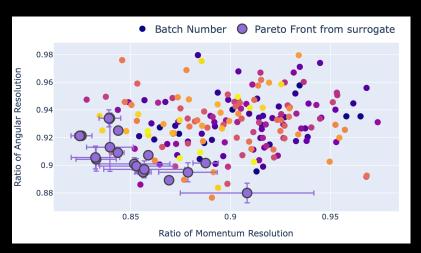
• Ax - BoTorch (Ref: Max Balandat's talk)

- Apt when evaluations of objectives are costly.
 Typical for our case.
- Builds surrogate models that maps objective space to design parameter space.
- Uses novel qNEHVI acq. function with reduced computational complexity <u>arxiv:2105.08195</u>.

Implementation

- 1 Level Parallelization (\approx 120cores)
- BATCH_SIZE 3 (q)
- N_BATCH 50
- qNEHVI + SAASBO

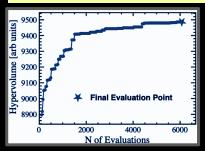




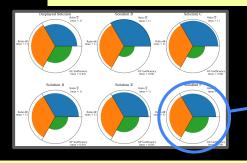
Interactive Visualization of the result

Analyzing results

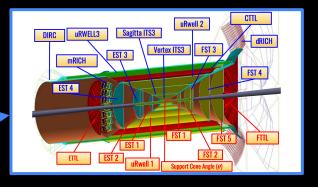
Can take a snapshot any time during evaluation



Updated Pareto Front at time t

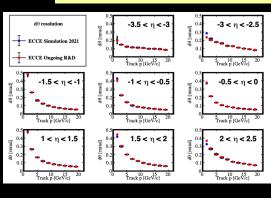


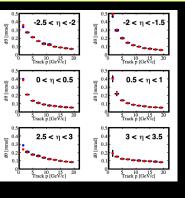
Each point is a design

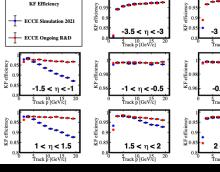


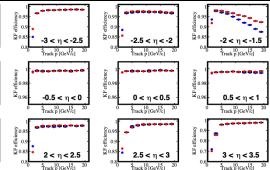
4

Analysis of Objectives (momentum resolution, angular resolution, KF Efficiency)

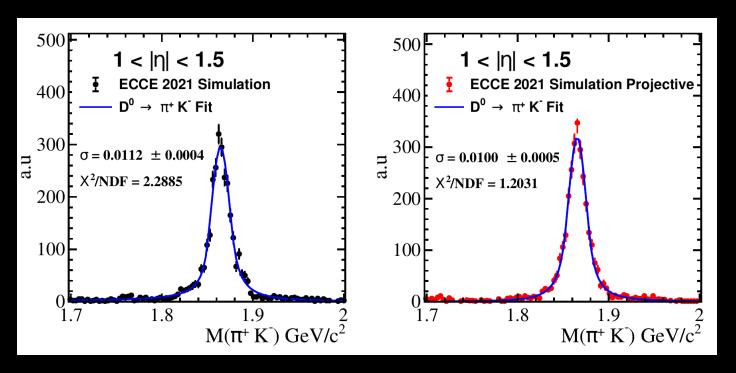






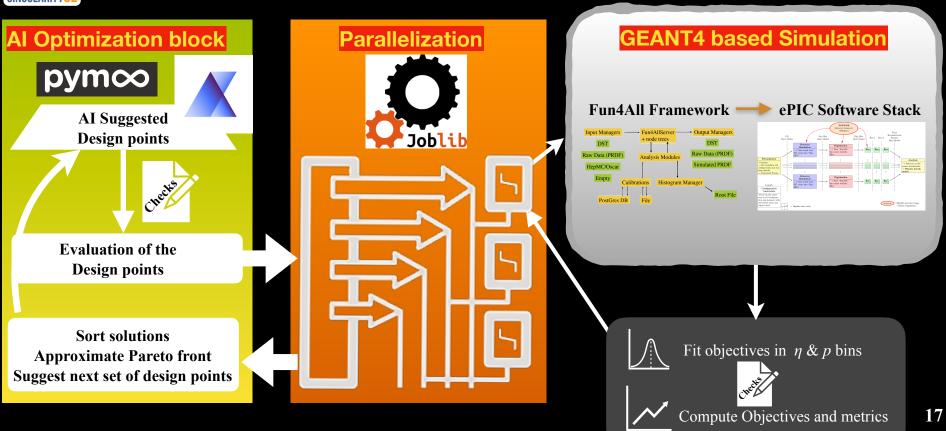


Post-hoc validation on physics observables



The π^+K^- invariant mass obtained from the SIDIS events with updated baseline and optimized projective geometry. A region of eta that is sensitive due to considerable materials for support structure was also taken in to account for this optimization.

AI assisted EIC Detector optimization pipeline



Al Optimiza

AI Sug Design

Evaluatio Design

Sort so

Approximate

Suggest next set

AI assisted EIC Detector optimization pipeline

ePIC Software Stack

- Geometry implementation via data source (DD4Hep uses ROOT TGeo) makes transparent the coupling of AI to the software stack design parameters; minimal changes needed to run different optimization pipelines.
- Modularity of geometry description reduces complexity of parametrization and therefore computational complexity.
- Effective CI/CD implementation. Need when relevant updates are made, eg. to simulation, or newer aspects to be included in optimization.
- Support for inherent parallelization and heterogenous computation.
- Ease of coupling AI/ML libraries in to the software framework.
- More at EIC Software Infrastructure Review

Software Stack

p bins

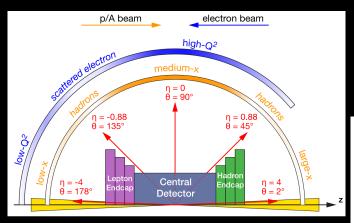
Summary

- AI can assist the design and R&D of complex experimental systems by providing more efficient design (considering multiple objectives) utilizing effectively the computing resources needed to achieve that.
- EIC can be one of the first experiments to be designed with the support of AI.
- Optimization could be done in phases. Eg. include one detector system at a time arxiv:2205.09185
- May not have to reinvent the wheel, leverage on existing SOTA tools,
 - Co-develop tools to better adapt and serve our community (EIC Software: Statement of principles)
- Ongoing work:
 - In the process of migrating to the new ePIC software stack*
 - Looking into tracker + PID optimization. e.g, detectors like the dRICH (<u>JINST 15 P05009</u>)
 - More realistic effects in the simulation and reconstruction techniques (effort from ePIC detector WG)

^{*} Beta tests successful

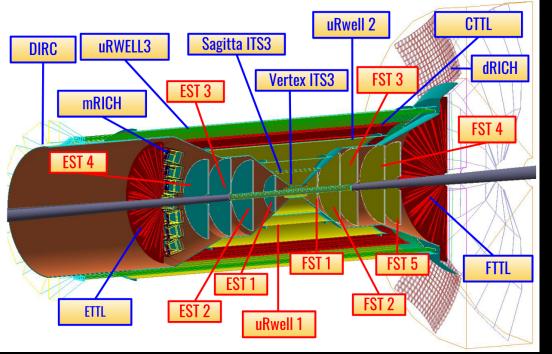
Spares

The ECCE Tracking System

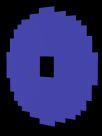


Pseudorapidity

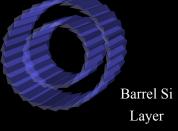
$$\eta \equiv -\ln\left[\tan\left(\frac{\theta}{2}\right)\right]$$



Detector parameters and Constraints



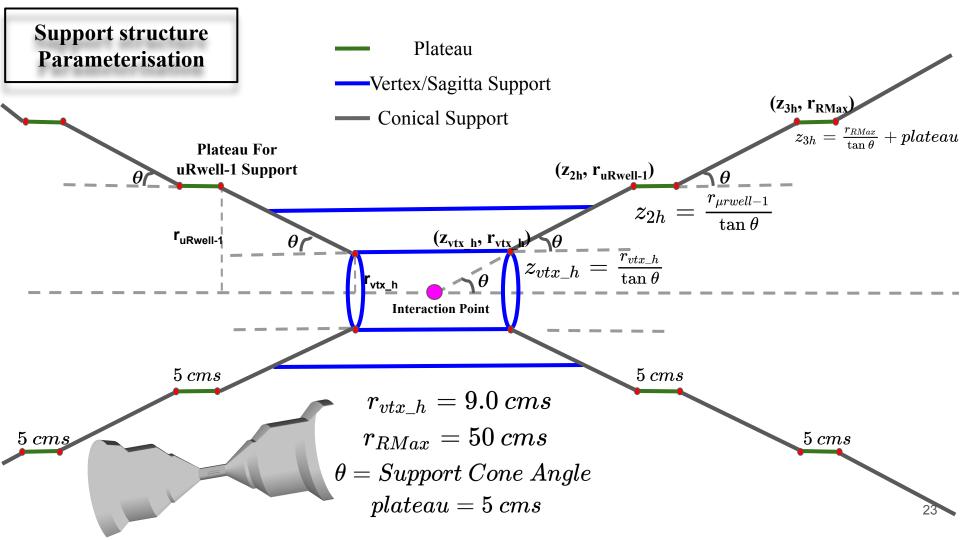
FST/EST Disks



l Si er	

ECCE design (non-projective)				
Design Parameter	Range			
μRWELL 1 (Inner) (r) Radius	[17.0, 51.0 cm]			
μ RWELL 2 (Inner) (r) Radius	[18.0, 51.0 cm]			
EST 4 z position	[-110.0, -50.0 cm]			
EST 3 z position	[-110.0, -40.0 cm]			
EST 2 z position	[-80.0, -30.0 cm]			
EST 1 z position	[-50.0, -20.0 cm]			
FST 1 z position	[20.0, 50.0 cm]			
FST 2 z position	[30.0, 80.0 cm]			
FST 3 z position	[40.0, 110.0 cm]			
FST 4 z position	[50.0, 125.0 cm]			
FST 5 z position	[60.0, 125.0 cm]			
ECCE ongoing R&D (projective)				
Design Parameter	Range			
Angle (Support Cone)	[25.0°, 30.0°]			
μ RWELL 1 (Inner) Radius	[25.0, 45.0 cm]			
ETTL z position	[-171.0, -161.0 cm]			
EST 2 z position	[45, 100 cm]			
EST 1 z position	[35, 50 cm]			
FST 1 z position	[35, 50 cm]			
FST 2 z position	[45, 100 cm]			
FST 5 z position	[100, 150 cm]			
FTTL z postion	[156, 183 cm]			

sub-detector	constraint	description
EST/FST disks	$min \left\{ \sum_{i}^{disks} \left \frac{R_{out}^{l} - R_{in}^{l}}{d} - \left\lfloor \frac{R_{out}^{l} - R_{in}^{l}}{d} \right\rfloor \right \right\}$	soft constraint : sum of residuals in sensor coverage for disks; sensor dimensions: $d = 17.8$ (30.0) mm
EST/FST disks	$z_{n+1} - z_n >= 10.0 \text{ cm}$	strong constraint: minimum distance between 2 consecutive disks
sagitta layers	$min\left\{\left \frac{2\pi r_{sagitta}}{w} - \left\lfloor\frac{2\pi r_{sagitta}}{w}\right\rfloor\right \right\}$	soft constraint : residual in sensor coverage for every layer; sensor strip width: $w = 17.8 \text{ mm}$
μ RWELL	$r_{n+1} - r_n >= 5.0 \text{ cm}$	strong constraint: minimum distance between μRwell barrel layers



Fitting Procedure

For resolutions

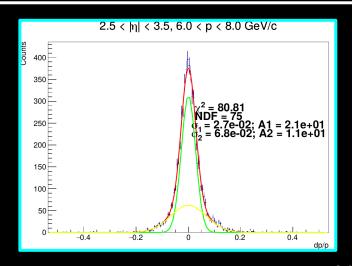
- Plot distributions of resolution in bins of eta and p
- Fit with a double gaussian function
- Set $A_{1 \text{ or } 2}$ (Amplitude) to 0 if the fit value of A is less than 1% of the $A_{2 \text{ or } 1}$
- Set $\sigma_{1 \text{ or } 2}$ to 0 if it is greater than the x axis extent of the histogram
- Calculate the weighted sigma of the fit function and its associated errors.

For Global KF Inefficiency

- Calculate the total number of tracks with trackID<0 for the entire simulation
- Global_KF_Inefficiency = No_of_tracks(trackID<0)/ Total Events

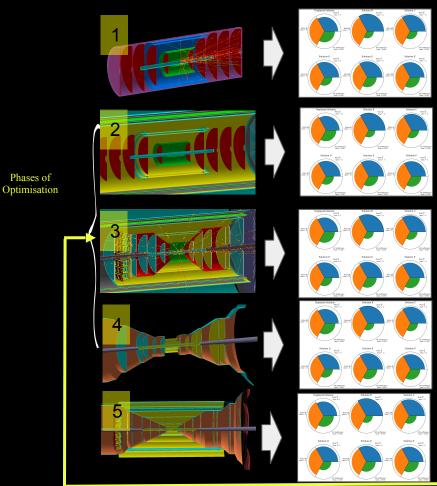
$$D_1 e^{(x-\mu)^2/\sigma_1^2} + D_2 e^{(x-\mu)^2/\sigma_2^2}$$

$$\sigma = \frac{\sigma_1 A_1 + \sigma_2 A_2}{A_1 + A_2}$$



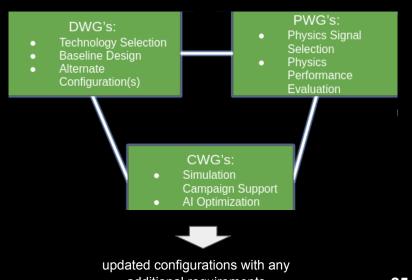
Phases of Optimisation

Phases of



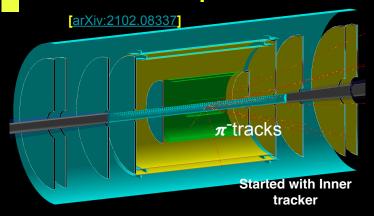
Tracker Optimisation timeline.

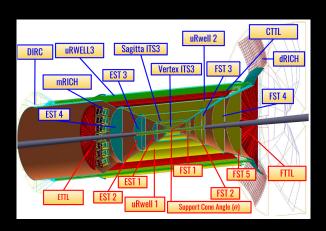
- 1: Barrel + technological choices.
- 2: Barrel+Disks. Without any support structures.
- 3. Barrel+Disks. With **fixed** support structures.
- 4. Barrel+Disks and support structure.
- 5. Full tracking system optimisation.



additional requirements Optimisation phases

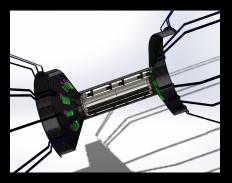
Tracker Optimization





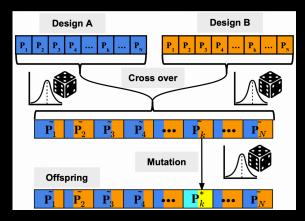
- The performance of tracker characterized by detector's response (eg. resolution, reconstruction efficiency for the tracks). Often more than one metric.
- Geometric/Design parameters have significant impact in the performance of the tracker.
- Optimization is a continuous and iterative process. Each time add more subsystems (and services) when available.
 11 parameters in this example.





Implementation of Support Structures with realistic material Budgets.

Elitist Non-Dominated Sorting Genetic (NSGA)

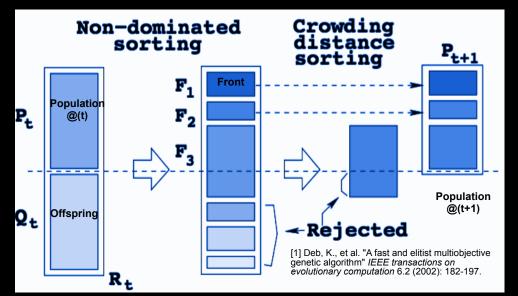


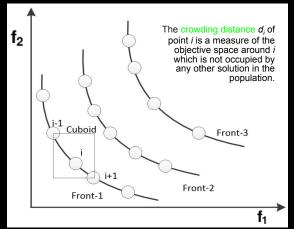
This is one of the most popular approach (>35k citations on google scholar), characterized by:

- Use of an elitist principle
- Explicit diversity preserving mechanism
- Emphasis in non-dominated solutions

The population R_t is classified in non-dominated fronts.

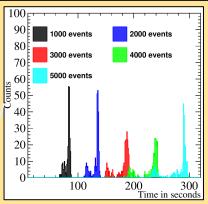
Not all fronts can be accommodated in the N slots of available in the new population P_{t+1} . We use **crowding distance** to keep those points in the last front that contribute to the highest diversity.





Software Stack & MOEA Ana

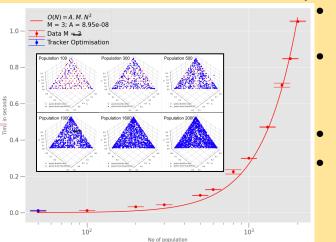
The Wrapper **Initialize Design Population** (Can "modify" gene in population) AI-assisted design **Evaluate Design Points** Parallelize the Evaluations Multi-objective Optimization



Simulating 80000 in total for each evaluation, 1 evaluation is <=80 mins

 $N_{vars} \ge 11$ $N_{gen} = 200$ $N_{population} = 100$ Offspring ≥ 30 $N_{var} = 30$ $N_{var} = 80$

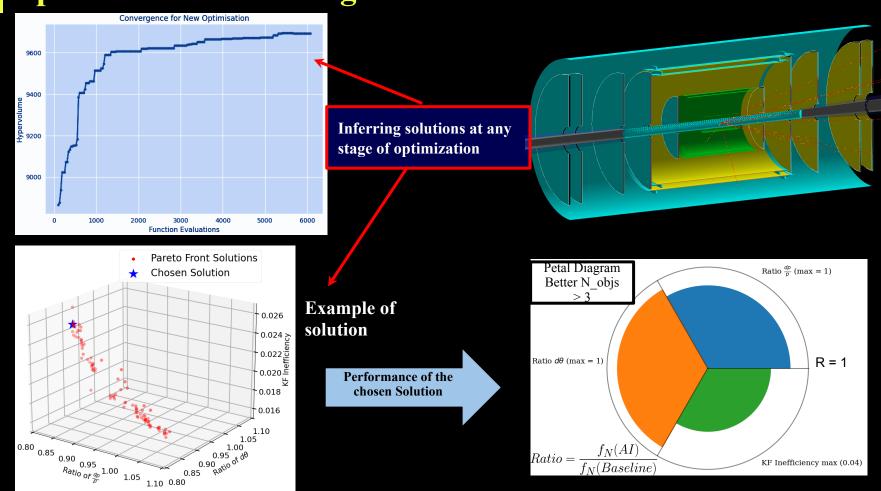
• Characterization of time taken by GA + sorting

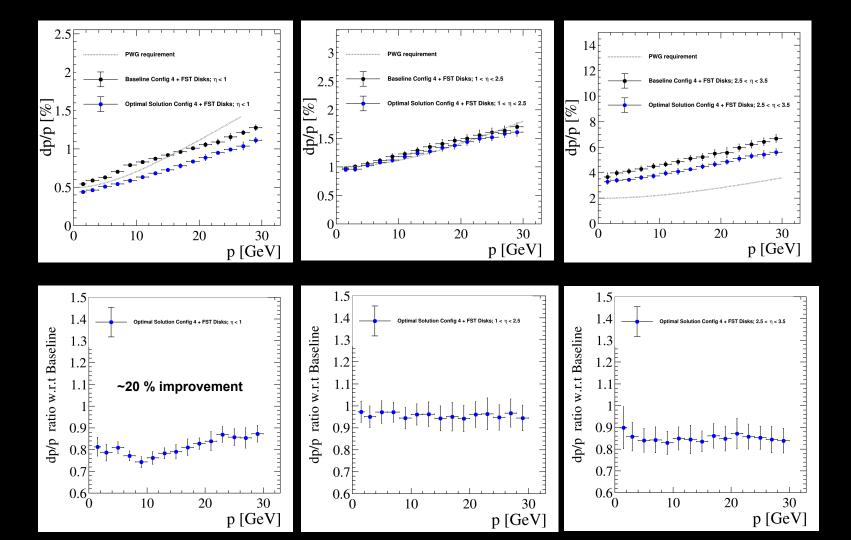


- Used a test problem DTLZ1
- Verified scaling following MN² and convergence to true front
- ~1s/call with 10⁴ size!
- For 11 variables and 3 objectives needs ~ 10000 evaluations to converge
 - ~10k CPU hours

Optimal Detector Design Solutions

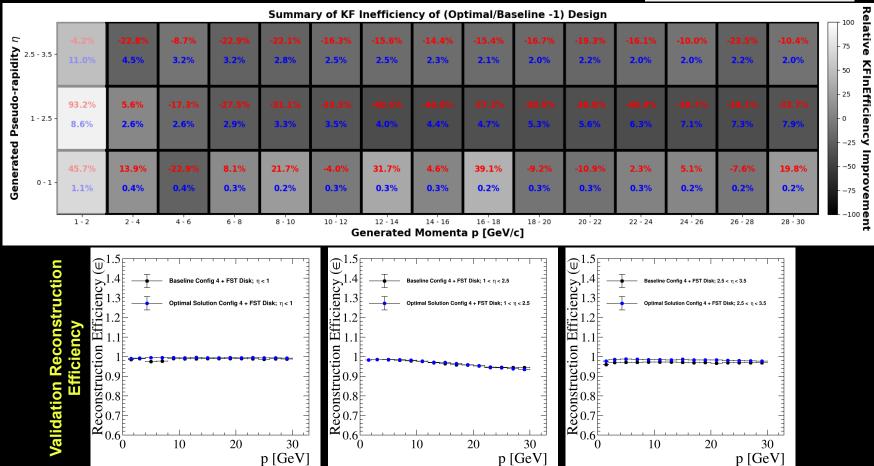
1.10 0.80

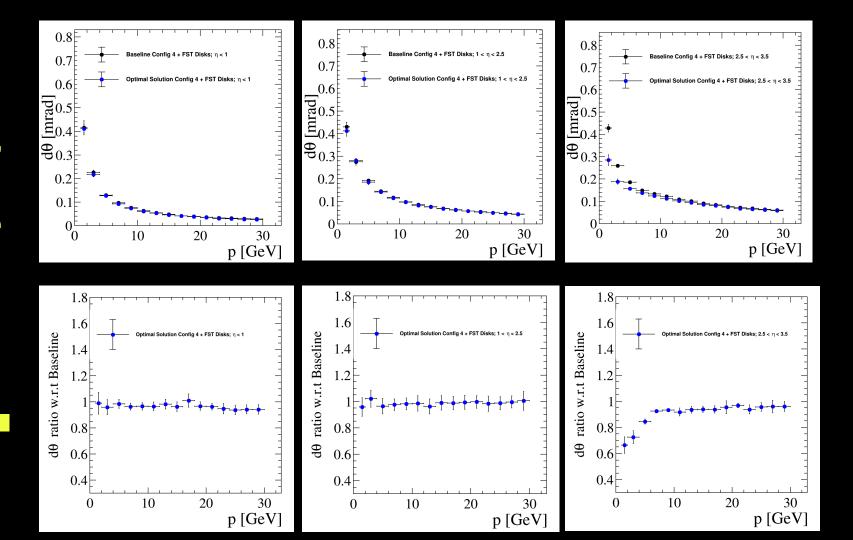


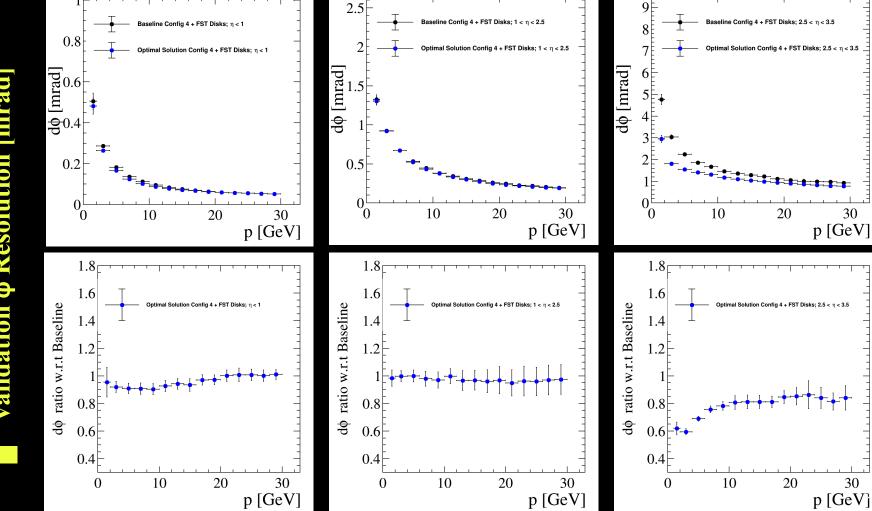


KF Inefficiency Improvement

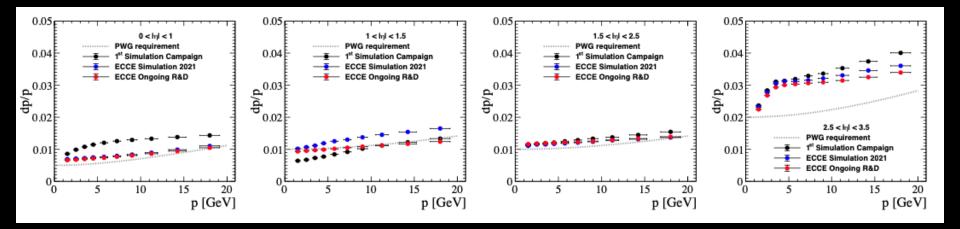
- Optimal/baseline -1
- Baseline Ineff

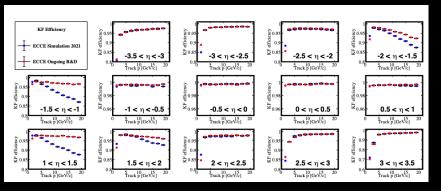


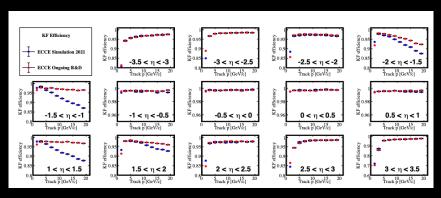


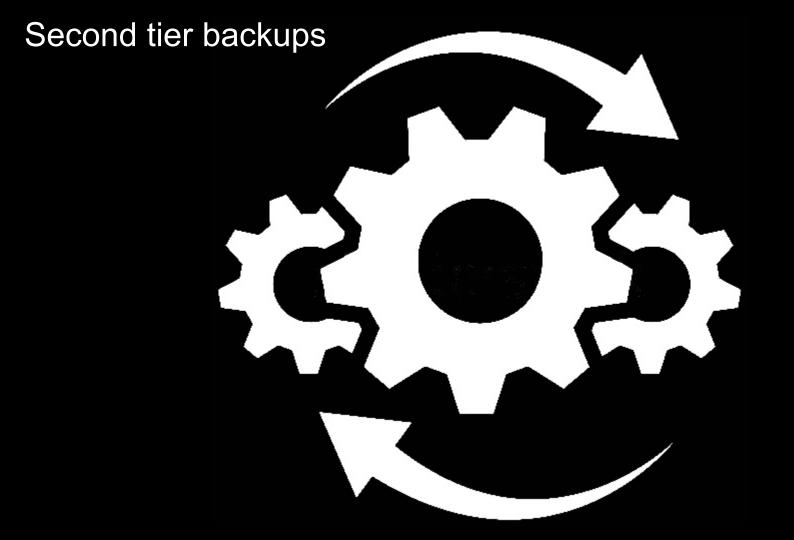


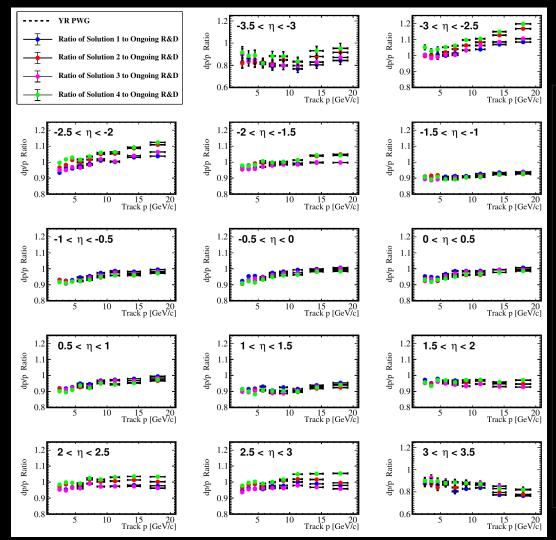
Evolution of Detector Performance (ECCE)











Highlights of this optimisation

- Finer eta bins and momentum bins
- Includes almost all of the tracker subsystems for optimisation
- Includes optimisation of the support structures too
- Baseline detector setup corresponds to a projective design which itself is a result of previous phases of optimisation
- More optimisations with Bayesian based approaches are also carried out currently.

MOO details

• Validating convergence.

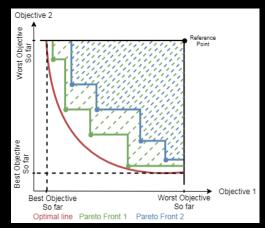
- Look in the design space for improvements in the last few calls
- Look into objective space. And perform cluster analysis on them
- Make a custom metric to analyse convergence.

Hypervolume

• The volume of the First front w.r.t a reference point

Bayesian Optimization

 Used When the evaluation of each point is resource intensive.



Hyper volume definition

Likelihood

How probable is the evidence given that our hypothesis is true?

Prior

How probable was our hypothesis before observing the evidence?

$$P(H \mid e) = \frac{P(e \mid H) P(H)}{P(e)}$$

Posterior

How probable is our hypothesis given the observed evidence? (Not directly computable)

Marginal

How probable is the new evidence under all possible hypotheses? $P(e) = \sum_i P(e \mid H_i) P(H_i)$

