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DVCS formalism
• B. Kriesten et al, Phys.Rev. D 101 (2020)
• B. Kriesten and S. Liuti, Phys.Rev. D105 (2022), arXiv 2004.08890
• B. Kriesten and S. Liuti, Phys. Lett. B829 (2022), arXiv:2011.04484

ML
• J. Grigsby, B. Kriesten, J. Hoskins, S. Liuti, P. Alonzi and M. Burkardt, Phys. Rev. D104 (2021)
• Manal Almaeen, Jake Grigsby, Joshua Hoskins, Brandon Kriesten, Yaohang Li, Huey-Wen Lin 

and S. L
``Benchmarks for a Global Extraction of Information from Deeply Virtual Exclusive Scattering,’’

[arXiv:2207.10766 [hep-ph]]. 

GPD Parametrization for global analysis
• B. Kriesten, P. Velie, E. Yeats, F. Yepez-Lopez and S. Liuti,
Phys. Rev D 105 (2022), arXiv:2101.01826 

DVES Global Analysis@UVA

https://arxiv.org/abs/2004.08890


Charge for this talk and workshop discussion

Address current ML applications in QCD theory while 
navigating the current “Strategic moment to discuss how to 
fully take advantage of the new opportunities offered by 
AI/ML to advance research, design, and operation of EIC.”
Cristiano Fanelli (AI4EIC workshop 2021)



• ML is key for discovery

• Using statistical methods, ML algorithms uniquely allow us to 
obtain key insights from the data, through classifications and 
predictions. 

• These insights are conducive to:
1.  abstracting physics concepts
2.  identifying the most relevant physics questions 
3. identifying the data which are needed to answer them.  

• ML applications are currently impacting two main 
directions in QCD theory

• ab initio calculations (lattice QCD+EFT+many body calculations)
• phenomenology
• phenomenology + lattice QCD  (H.-W. Lin)



A working example : 
global fitting of deeply 
virtual exclusive 
scattering data
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A working example : 
global fitting of deeply 
virtual exclusive 
scattering data
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I. Fadelli , Phys.org (2020)
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dxx [Hq(x, 0, 0) + Eq(x, 0, 0)] = Jq

Quark/gluon physics observables we hope to extract from DVES

(M. Burkardt, 2000)

(X. Ji, 1997)

These distributions are not directly observable!

3D StructureAngular momentum



The challenge for 
QCD phenomenology

Is the 
information 
on Jq,g(t) in 
DVES data?   

What 
information is 
in the data?  
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Our approach 
1. Precursor: can ML model the cross section?                 

J. Grigsby, B. Kriesten et al. Phys. Rev. D104 (2021)

2. Introduce ML models with architectures that reflect
physics constraints from the theory : i) less modeling 
error; ii) reduced demand
on data points; iii) faster training; iv) improved 
generalization.



Precursor: can ML model the cross section?                 
J. Grigsby, B. Kriesten et al. Phys. Rev. D104 (2021)

Comparison with 
baseline models



Physics informed ML models
M. Almaeen et al. [arXiv:2207.10766 [hep-ph]].   

Observables extractionIncluding symmetries from theory Data augmentation from 
physical x-sec error



Future 
1. VAIM
2. Including Lattice QCD constraints
3. Reinforcement Learning 
4. Uncertainty Quantification

M. Almaeen

First quantitative 
extraction of observables
(CFFs)



Graph by Manal Almaeen

• M.  Almaeen, J. Grigsby, J. Hoskins, B. Kriesten, Y. Li, H. W. Lin and S. Liuti, in preparation

Going beyond standard fitting procedures: Variational Autoenconder example  



Our team: interdisciplinary 
workforce 

• Phenomenology/Theory: B. Kriesten, SL
• CS: Y. Li, M. Almaeen, J. Hoskins, (J. Grigsby)
• Lattice QCD: H.W. Lin
• Experiment: N. Kalantarian



AI/ML for QCD 
Phenomenology

• Information: by extending VAIM/RL/similar methods to 
all observables, including Jq , we will be able to test what 
type of information can be found in the data.

• Data augmentation: VAIM/similar methods can be 
used for data augmentation. New field of Data-Sparse 
environments

• Uncertainty quantitifcation: distinguishing epistemic 
from aleatoric origin of uncertainty. ML methods can 
uniquely address this question differently from standard 
regression where epistemic  uncertainty is given by an 
unquantifiable dependence on the functional form.



EIC analyses should be based on rigorous benchmarking  that allows for quantitative comparison of different approaches. 

In our DVES example: 

Ø Physics Benchmarks
• number and type of CFFs  
• Q2 dependence of the cross section and observables:  kinematic terms, PQCD evolution (LO, NLO, NNLO), and dynamical 

beyond LO terms (higher twists)

Ø Machine Learning Benchmarks
• ML architectures hyperparameters (number of layers,

size of hidden nodes, activation functions, drop-out
rates, loss functions, gradient descent methods) 

• Features specific to data-centric analysis (feature selection and transformation,
data augmentation, data synthetics, and data cleansing) 

• Uncertainty Quantification 
• Inherent statistical fluctuations in physics (statistic)
• Errors inherent from measurement system (systematic)
• Errors in ML models
• Errors in the training procedure

For the EIC community: A rigorous benchmarking process



. 
Examples:

Ø Dealing with small amounts of data/sparse data 

Ø Question of how we interpret information

Ø Is adding more data always good? Breaking or going beyond 
the paradigms of the “standard model of statistics”.

Proposal of future workforce organization based on synergy/two ways process 

ML enhances and allows physics discovery Problems posed by physicists tare of interest to ML

Lets organize it!

https://peaceproject.com/


