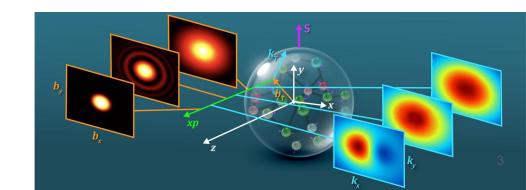
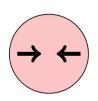

Femtoscale Imaging of Nuclei using ML and Exascale Platforms

Nobuo Sato

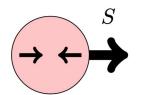

Outline

- Motivations
- 2. Complexity of SIDIS
- 3. Integrated THY/EXP analysis
- 4. Summary

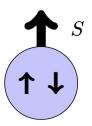


Motivations

- WHAT?: Synthesis of 3D tomography/nuclear imaging
 - quantum correlation functions (QCFs)
 - o hadron structure (PDFs, TMDs, GPDs, ...)
 - hadronization (FFs, TMDFFs)
- HOW?: Data (EXP), Factorization (THY/LQCD), Inference (CS)
 - test of universality & theory predictive power
 - significant computing and data analysis
 - systematic improvements (resummation, evolution, HO calculations)
 - synergy with lattice QCD (Bayesian priors)
- WHY?: Opportunities
 - o origin of proton spin
 - quark and gluon tomography
 - structure of proton sea (strangeness, antimatter asymmetry)
 - origin of nuclear EMC effect
 - o small-x phenomena
 - precision EW physics (Weinberg angle)
 - o ...



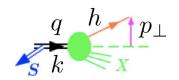
Collinear Spin structures


$$f = f_{
ightarrow} + f_{\leftarrow}$$
 Parton distribution functions

$$\langle N|\bar{\psi}_i(0,w^-,\mathbf{0}_{\mathrm{T}}) \gamma^+ \psi_i(0)|N\rangle$$

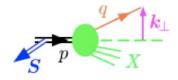
$$\Delta f = f_{\rightarrow} - f_{\leftarrow}$$
 Helicity distribution

$$\langle N|\bar{\psi}_i(0,w^-,\mathbf{0}_{\mathrm{T}})\gamma^+\gamma_5\psi_i(0)|N\rangle$$

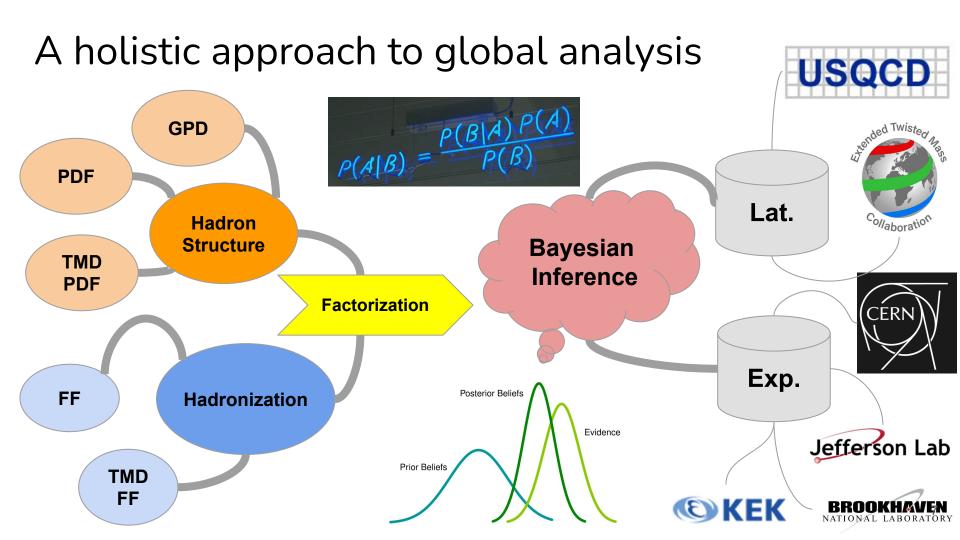

$$\delta_{\mathrm{T}}f=f_{\uparrow}-f_{\downarrow}$$
 Transversity

$$\langle N|\bar{\psi}_i(0,w^-,\mathbf{0}_{\mathrm{T}})\gamma^+\gamma_\perp\gamma_5\psi_i(0)|N\rangle$$

TMD Spin structures


Sivers '89

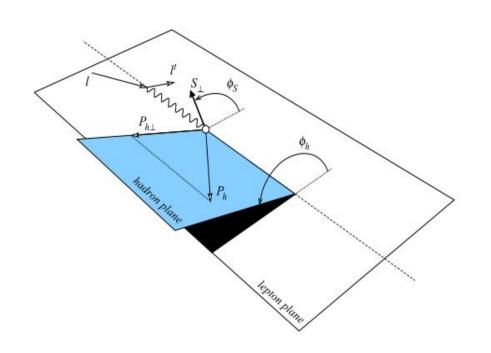
$$f_{q/h\uparrow}(x,\vec{k}_{\perp},\vec{S}) = f_{q/h}(x,k_{\perp}^2) - \frac{1}{M} f_{1T}^{\perp q}(x,k_{\perp}^2) \vec{S} \cdot (\hat{P} \times \vec{k}_{\perp})$$



Collins '92

$$D_{q/h}(z, \vec{p}_{\perp}, \vec{s}_{q}) = D_{q/h}(z, p_{\perp}^{2}) + \frac{1}{zM_{h}} H_{1}^{\perp q}(z, p_{\perp}^{2}) \vec{s}_{q} \cdot (\hat{k} \times \vec{p}_{\perp})$$

\bigcirc	►= Nucleon Spin		Nucleon Polarization	
<u>-</u>	= Quark Spin	Unpolarized	Longitudinal	Transverse
Quark Polarization	Unpolarized	f_1 • Number Density		$f_{1T}^{\perp} \underbrace{\bullet}_{\text{Sivers}} - \underbrace{\bullet}_{\text{Sivers}}$
	Longitudinal		$g_1 \longrightarrow - \bigoplus$ Helicity	$g_{1T}^{\perp} \underbrace{ \begin{array}{c} \uparrow \\ - \\ \text{Worm-Gear T} \end{array}}$
	Transverse	h_1^{\perp} \bullet \bullet Boer-Mulders	h_{1L}^{\perp} \longrightarrow — \longrightarrow Worm-Gear L	h_1 Transversity h_{1T}^{\perp} Pretzelosity

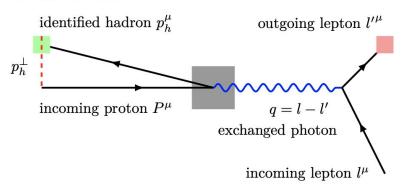


Outline

- 1. Motivations
- 2. Complexity of SIDIS
- 3. Integrated THY/EXP analysis
- 4. Summary

3D hadron structure using SIDIS

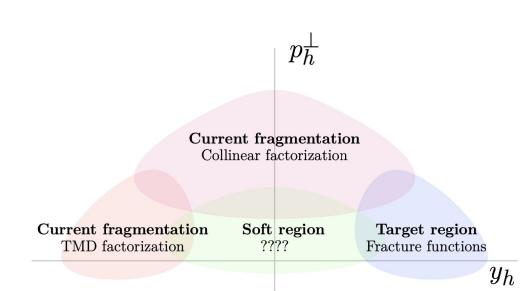
A prime experiment in existing and future facilities

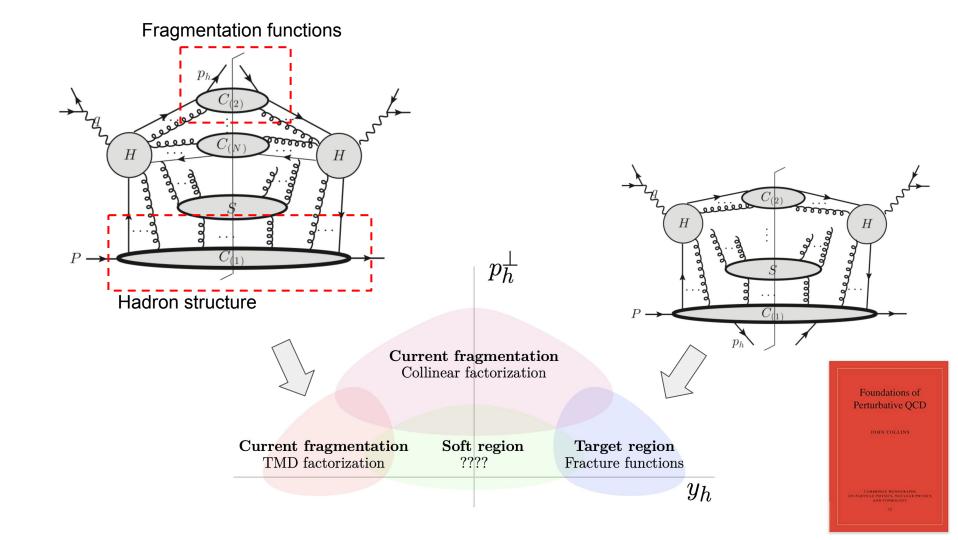


$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2}\,\frac{y^2}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^2}{2x}\right)\left\{\begin{matrix} F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h} \\ + \varepsilon\,\cos(2\phi_h)\,F_{UU}^{\cos2\phi_h} + \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h} \\ + S_{\parallel}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h\,F_{UL}^{\sin\phi_h} + \varepsilon\,\sin(2\phi_h)\,F_{UL}^{\sin2\phi_h}\right] \\ + S_{\parallel}\lambda_e\left[\sqrt{1-\varepsilon^2}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h\,F_{LL}^{\cos\phi_h}\right] \\ + |S_{\perp}|\left[\sin(\phi_h-\phi_S)\left(F_{UT,T}^{\sin(\phi_h}-\phi_S) + \varepsilon\,F_{UT,L}^{\sin(\phi_h}-\phi_S)\right)\right. \\ + \varepsilon\,\sin(\phi_h+\phi_S)\,F_{UT}^{\sin(\phi_h}-\phi_S) + \varepsilon\,\sin(3\phi_h-\phi_S)\,F_{UT}^{\sin(3\phi_h}-\phi_S) \\ + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S\,F_{UT}^{\sin\phi_S} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h-\phi_S)\,F_{UT}^{\sin(2\phi_h}-\phi_S) \right] \\ + |S_{\perp}|\lambda_e\left[\sqrt{1-\varepsilon^2}\,\cos(\phi_h-\phi_S)\,F_{LT}^{\cos(\phi_h}-\phi_S) + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_S\,F_{LT}^{\cos\phi_S} \\ + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_h-\phi_S)\,F_{LT}^{\cos(2\phi_h}-\phi_S)}\right], \end{split}$$

Physics goals

Name	Symbol	meaning
upol. PDF	f_1^q	U. pol. quarks in U. pol. nucleon
pol. PDF	g_1^q	L. pol. quarks in L. pol. nucleon
Transversity	h_1^q	T. pol. quarks in T. pol. nucleon
Sivers	$f_{1T}^{\perp(1)q}$	U. pol. quarks in T. pol. nucleon
Boer-Mulders	$h_1^{\perp(1)q}$	T. pol. quarks in U. pol. nucleon
Boer-Mulders	$h_1^{\perp (1)q}$	T. pol. quarks in U. pol. nucleon
:	:	:
FF	D_1^q	U. pol. quarks to U. pol. hadron
Collins	$H_1^{\perp(1)q}$	T. pol. quarks to U. pol. hadron
:	:	:


Breit frame



Large vs small pT

$$q_{\mathrm{T}} = p_h^{\perp}/z$$

 q_{T}/Q \Longrightarrow The scale separation

$$\mathbf{W} = \sum_{f} H_{f}(Q, \mu) \int \frac{d^{2}\boldsymbol{b}_{\mathrm{T}}}{(2\pi)^{2}} e^{-i\boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}}$$

Fragmentation functions
$$P = C_{(N)}$$
Hadron structure

$$\times e^{-g_{f/N}(x,b_{\mathrm{T}},b_{\mathrm{max}})} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} f_{f/N}(\hat{x},\mu_{b_{*}}) \tilde{C}_{f/p}(x/\hat{x},b_{*},\mu_{b_{*}}^{2},\alpha_{S}(\mu_{b_{*}}))$$

$$\times e^{-g_{h/f}(z,b_{\mathrm{T}},b_{\mathrm{max}})} \int_{z}^{1} \frac{d\hat{z}}{\hat{z}^{3}} d_{h/f}(\hat{z},\mu_{b_{*}}) \tilde{C}_{h/f}(z/\hat{z},b_{*},\mu_{b_{*}}^{2},\alpha_{S}(\mu_{b_{*}}))$$

$$\times \left(\frac{Q^2}{Q_0^2}\right)^{-\mathbf{g}_K(b_{\mathrm{T}},b_{\mathrm{max}})} \left(\frac{Q^2}{\mu_{b_*}^2}\right)^{\tilde{K}(b_*,\mu_{b_*})}$$

$$\times \exp\left[\int_{\mu_b}^{\mu_Q} \frac{d\mu'}{\mu'} \left[2\gamma(\alpha_S(\mu'),1) - \ln\frac{Q^2}{(\mu')^2}\gamma_K(\alpha_S(\mu'))\right]\right]$$

Aybat, Rogers '11

Linking external kinematics with regions

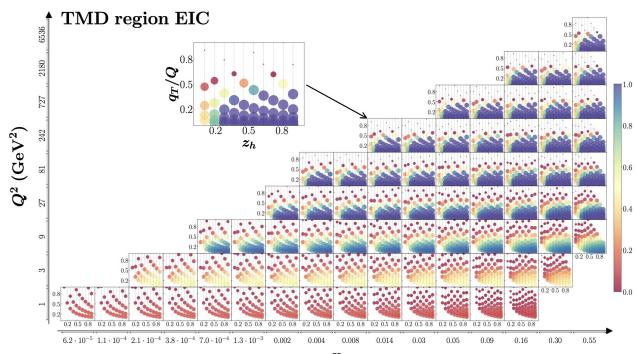
Boglione et al '22

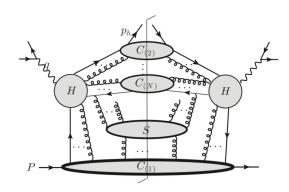
 p_h^{\perp}

	Region	R_0	R_1	R_1	R_2	R_3	R_4
	TMD	small	small	×	small	×	×
	matching	small	small	×	small	×	×
	collinear	small	small	×	large	small (LO pQCD)	small
						large (HO pQCD)	
-	target	small	large	small	×	×	×
	central	small	not small	not small	small	×	×

Current	fra	gmentation
Collinea	ır fa	ctorization

Current	fragmentation
TMD	factorization

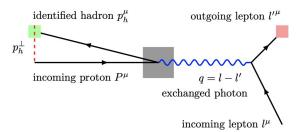

Soft region

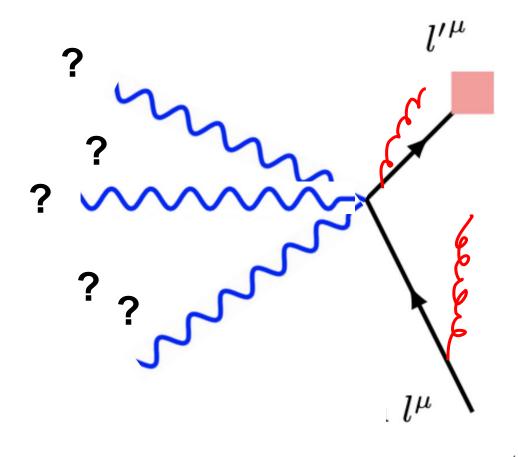

Target region
Fracture functions

 y_h

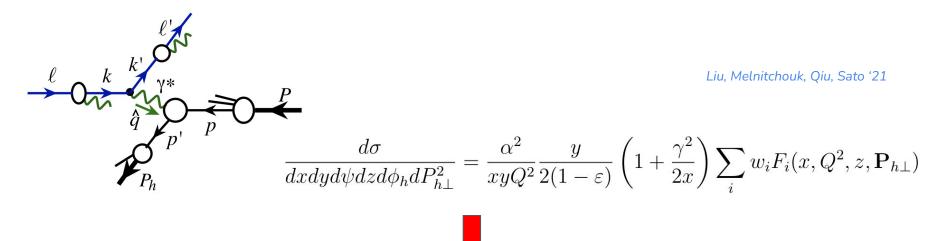
$$\mathcal{A}(x_{\mathrm{Bj}}, Q^2, z_h, P_{hT}|\mathrm{region}) = \int \mathrm{d}\{R_i\} |\Theta(\{R_i\}|\mathrm{region})$$

$$\times \int \mathrm{d}^4k_i \,\mathrm{d}^4k_f \,\mathrm{d}^4\delta k_T |\mathcal{P}(\{R_i\}|x_{\mathrm{Bj}}, Q^2, z_h, P_{hT}; k_i, k_f, \delta k_T) |\pi(k_i, k_f, \delta k_T),$$

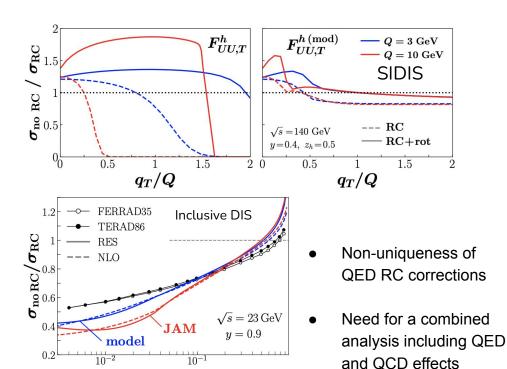



 $oldsymbol{x}_{ ext{Bj}}$

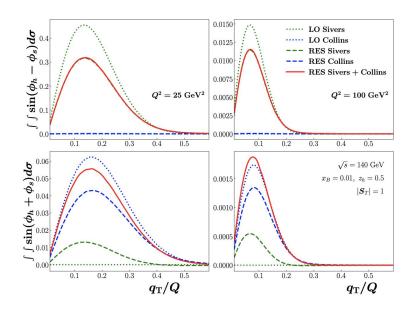
Role of QED effects


- In the presence of QED radiation, the q direction is not fixed
- The experimental Breit
 Frame does not need to
 coincide with the actual
 Breit-frame needed in QCD
 factorization

Breit frame

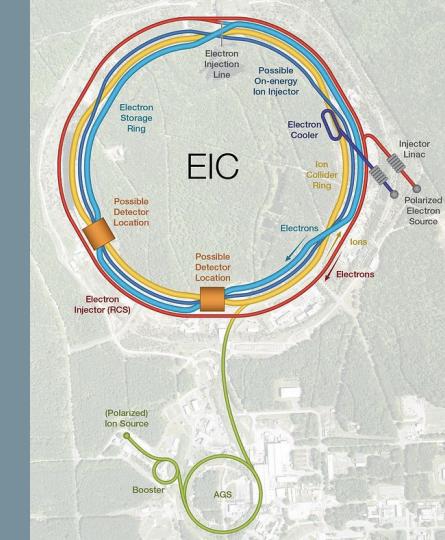


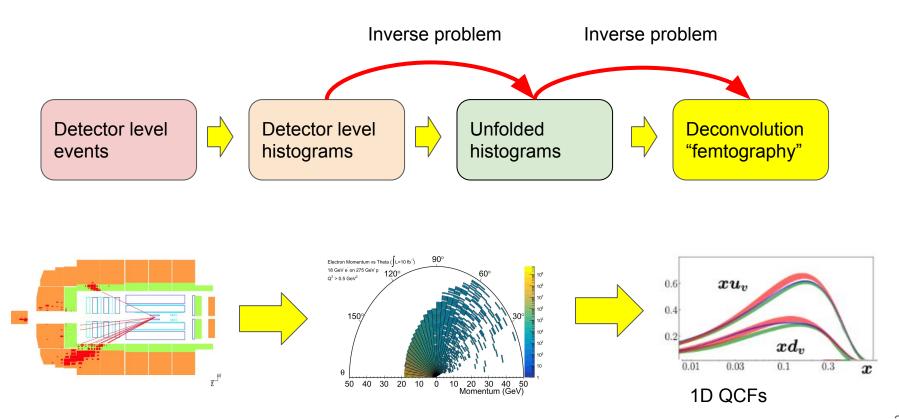
Hybrid QED+QCD factorization approach

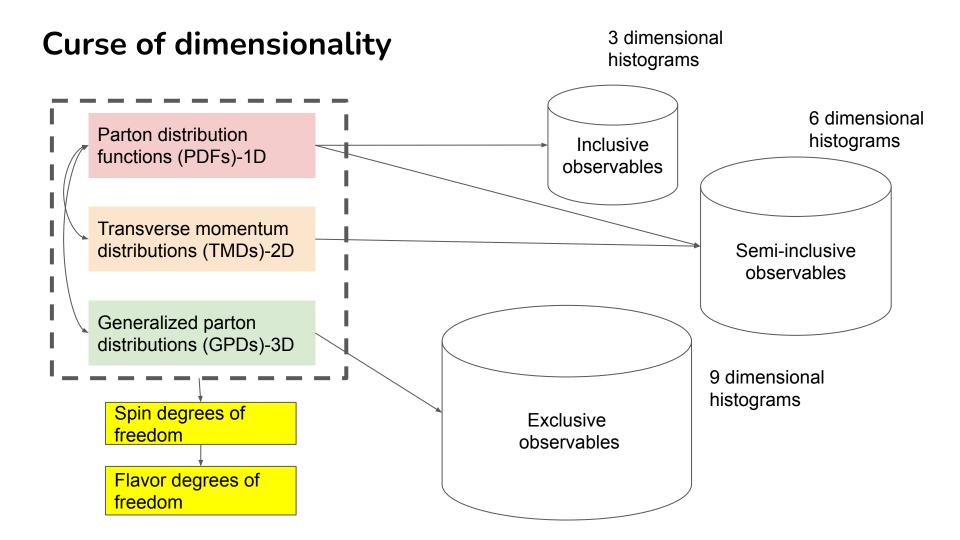


$$\frac{d\sigma}{dxdyd\psi dzd\phi_h dP_{h\perp}^2} = \int_{\zeta_{\min}}^1 d\zeta \int_{\xi_{\min}(\zeta)}^1 d\xi f_{k/l}(\xi) d_{k'/l'}(\zeta)
\times \frac{\hat{x}}{x\xi\zeta} \left[\frac{\alpha^2}{\hat{x}\hat{y}\hat{Q}^2} \frac{\hat{y}}{2(1-\hat{\varepsilon})} \left(1 + \frac{\hat{\gamma}^2}{2\hat{x}} \right) \sum_i \hat{w}_i F_i(\hat{x}, \hat{Q}^2, \hat{z}, \hat{\mathbf{P}}_{h\perp}) \right]$$

QED effects in eP reactions


 $oldsymbol{x}_{\scriptscriptstyle B}$


- Hybrid QED+QCD framework to study SSAs in SIDIS within global analysis
- Crucial to control QED backgrounds in transverse spin asymmetries


Outline

- 1. Motivations
- 2. Complexity of SIDIS
- Integrated THY/EXP analysis
- 4. Summary

Existing paradigm -> histogram approach

Event-based analysis?

Vertex

Level

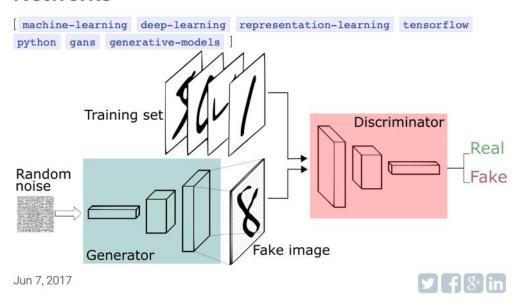
Events

physics

Can we compare real vs synthetic events?
Why?
Avoid histograms and minimize systematic uncertainties
Avoid unfolding and use direct simulation

Experimental Events
Event level comparison

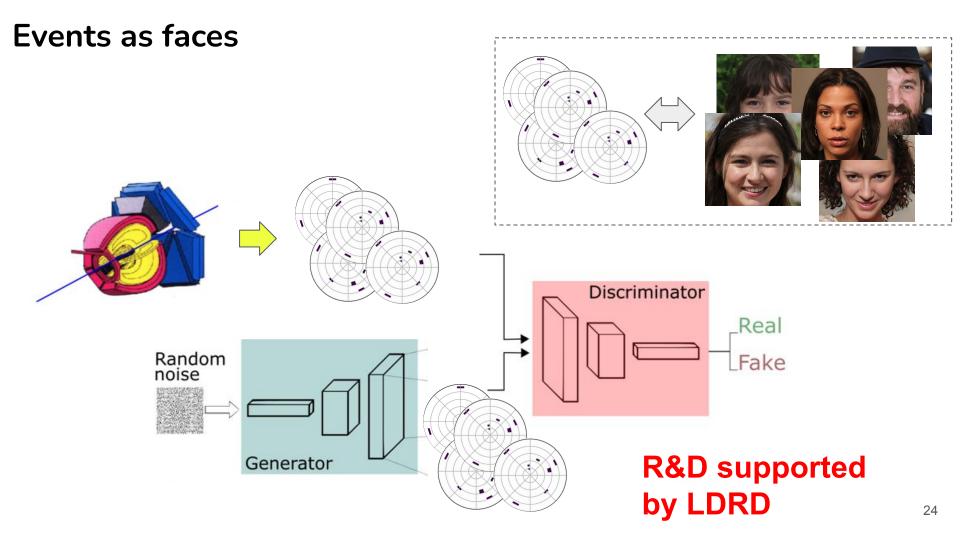
Simulated


Events

Detector

simulation

So, how do we compare events?


A Short Introduction to Generative Adversarial Networks

Fake people

https://thispersondoesnotexist.com

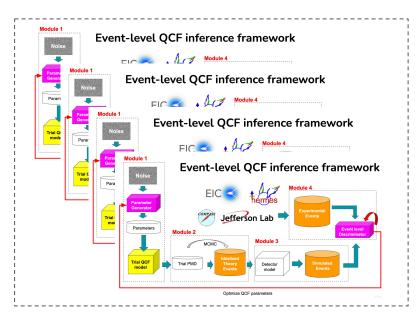
Module 1 Event-level QCF inference framework Noise **Module 4 Parameter** Generator **Experimental** COMPASS Jefferson Lab **Events Parameters Event level** Module 2 **Discriminator** Module 3 **MCMC** Idealized **Trial QCF** Simulated Trial PMD Theory Detector model **Events Events** model

Opportunities

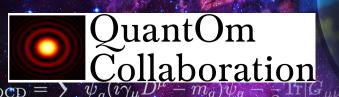
- Unified Theory+Exp analysis framework for hadron structure -> paradigm shift
- Near real time analysis and expedite scientific discovery

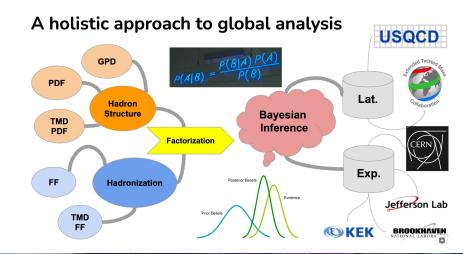
Challenges

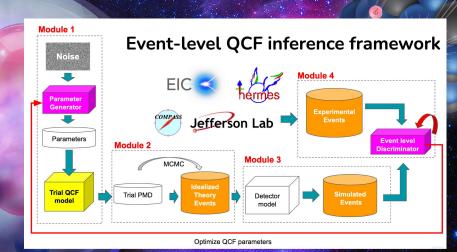
- Big event level data processing from JLab/EIC requires large scale computing -> exascale computing
- Dedicated distributed ML workflow needs to be developed



Supported by DOE SciDAC funds







Summary

- New era of global analysis of hadron structure unified theory & experiment analysis
- Al/ML provides new tools/tricks to map QCFs from events and boost the discovery potential of current and future experimental facilities
- Large scale computing is needed -> opportunity to use ECP

Backup

Challenges

Experimental domain

Theory domain

Subjected to theory bias

Requires to remove detector effects

Detector level events

Detector level histograms

Unfolded histograms

Increasingly difficult in higher dimensional observables

Arbitrary choice of binning

Subjected to parametrization bias

Deconvolution "femtography"

Deconvolution relies on an approximation, needs validation