

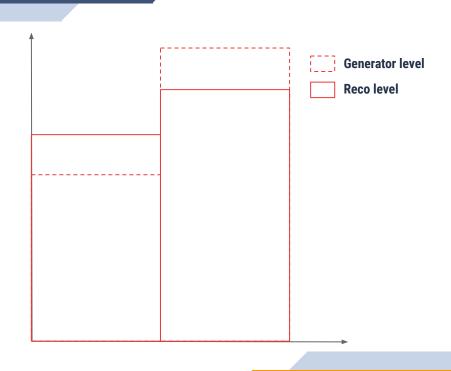
Machine learning-based unfolding with Omnifold and measurement of jet substructure with H1 data

Vinicius M. Mikuni

Unfolding

- We only have access to observables at reconstruction level, i.e after detector effects
- When comparing different theories, we want to compare observables before detector interaction (generator level):
 - Don't require theorists to have expert detector knowledge to compare their predictions
 - Easier to maintain and incorporate new calibration routines for detector simulation
- What I'm **not** talking about today:

 - ⊳ <u>SVD</u>
 - Matrix inversion
 - Other methods for unfolding using histograms



Traditional methods for unfolding are performed using **histograms**

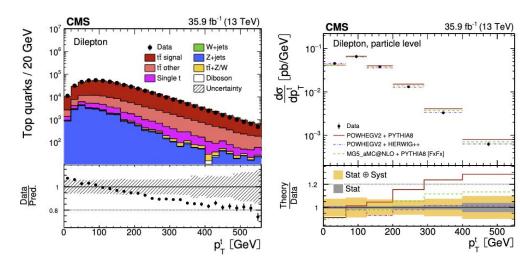
- Well understood statistical properties
- Clear convergence criteria

Limitations:

- Histograms need to be defined before unfolding.
 - If a different binning is required, the full unfolding routine needs to be redone
- Often able to address only 1 observable at a time
 - Multi-dimensional histograms are harder to deal with: curse of dimensionality

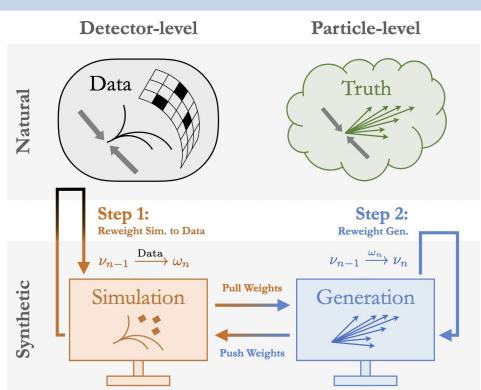
Reco level

Generator level



J. High Energ. Phys. 2019, 149 (2019).

- * Andreassen et al. PRL 124, 182001 (2020) For unfolding using **invertible networks** see:
 - SciPost Phys. 9 (2020) 074 e-Print: 2006.06685



ML is used to define a method for unfolding that is unbinned and can use multiple distributions at a time **2 step** iterative approach

- Simulated events after detector interaction are reweighted to match the data
- Create a "new simulation" by transforming weights to a proper function of the generated events

Machine learning is used to approximate **2** likelihood functions:

- reco MC to Data reweighting
- Previous and new Gen reweighting

* Andreassen et al. PRL 124, 182001 (2020)

Experimental setup

Using 228 pb⁻¹ of data collected by the H1 Experiment during 2006 and 2007 at 318 GeV center-of-mass energy $Q^2 = -q^2$ y = Pq / pk

27.5 GeV e⁺⁻ (k) 920 GeV p (P)

P: incoming proton 4-vector **k:** incoming electron 4-vector **a=k-k':** 4 momentum transfer

q=k-k': 4-momentum transfer

Phase space definition:

- 0.2 < y < 0.7
- $Q^2 > 150 \text{ GeV}^2$
- Jet $p_{\tau} > 10 \text{ GeV}$
- $-1 < \eta'_{lah} < 2.5$

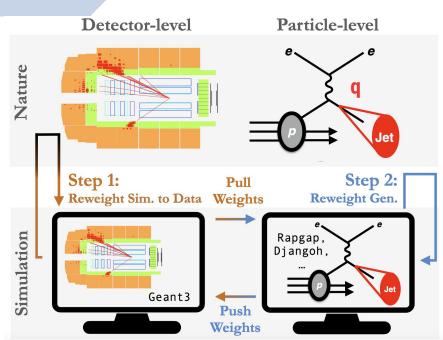
Jets are clustered with **kt** algorithm with **R=1.0**

Reconstructed hadrons using combined detector information: **energy flow algorithm**

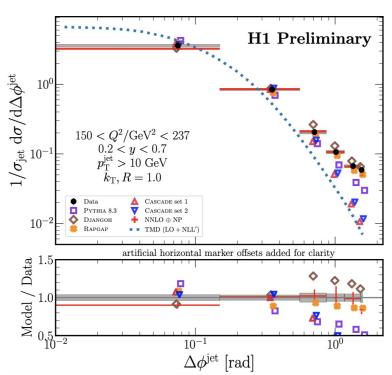
TMD Measurement

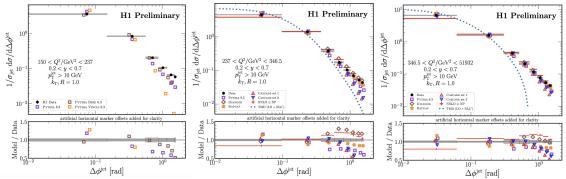
TMD sensitive observables are unfolded using jet and lepton information

- Both jet and lepton kinematics are used as inputs to OmniFold
- Follow up work from <u>Phys. Rev. Lett. 128</u>, 132002
- New observables can also be calculated after the unfolding procedure!
- Study the evolution of the observables with energy scale $Q^2 = -q^2$



TMD Measurement



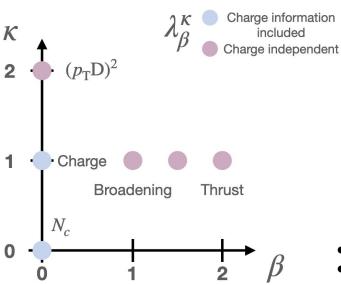


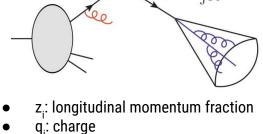
• Q² is not directly unfolded, but can be calculated from the unfolded distributions!

Jet angularities

Use jet observables to study different aspects of QCD physics:

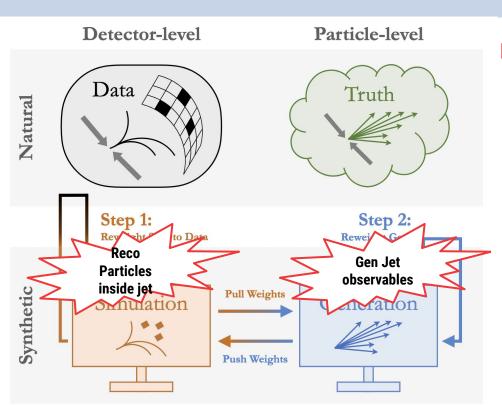
- IRC safe λ_a^1 , a = [0,0.5,1] and unsafe $\mathbf{p}_{\mathbf{T}}\mathbf{D}$ angularities
- Charge dependent observables:
 - $\mathbf{Q_j}$ and $\mathbf{N_c}$
- Study the evolution of the observables with energy scale $Q^2 = -q^2$





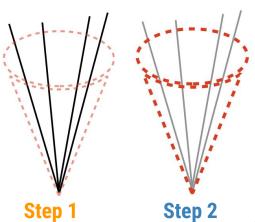
- R_i distance from jet axis in (eta,phi)
- $\lambda_{\beta}^{\kappa} = \sum_{i \in \text{iet}} z_i^{\kappa} \left(\frac{R_i}{R_0} \right)^{\beta} \qquad \tilde{\lambda}_0^{\kappa} = Q_{\kappa}$
 - $\tilde{\lambda}_0^{\kappa} = Q_{\kappa} = \sum_{i} q_i \times z_i^{\kappa}.$

Omnifold



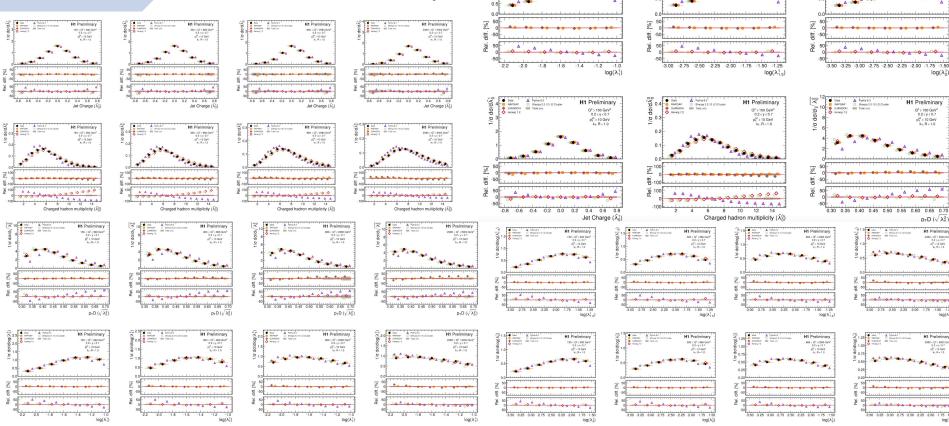
Different input levels for each step

- Step 1 particles are used as inputs
- Step 2 uses the set of observables planned to unfold

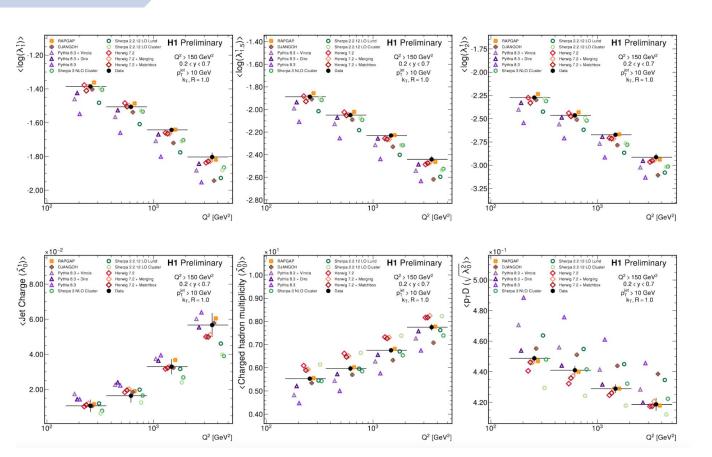


Multi-differential

All Q² intervals and distributions are unfolded simultaneously!

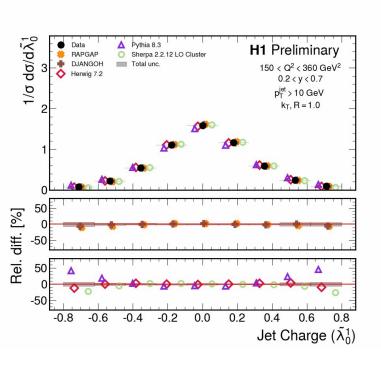


Multi-differential



First moment (mean) of all jet substructure observables are measured vs Q²

Conclusions and prospects



- ML based unfolding can drastically change the way we measure physics observables
 - Open the possibility for generator level information before the measurement is performed
 - More information is incorporated to the unfolding model, leading to proper correlations between inputs and possibly lower detector uncertainties
 - Binning independent and can be quickly changed after unfolding
 - Trivial to **estimate statistical properties** of the data after unfolding, such as moments of the distribution
- More info in the preliminary results available at:

H1prelim-22-034, H1Prelim-22-031

THANKS!

Any questions?

Backup

Omnifold

Reco level

Omnifold

Reco level

Iteration 1

Step 1:

- Train a classifier to separate data from MC events
- Reweight **reco level MC** with weights:

$$W(reco) = p_{Data}(reco)/p_{MC}(reco)$$

Reco level

Iteration 1

Step 2:

- Pull weights from step 1 to generator level events
- Train a classifier to separate initial MC at gen level from reweighted MC events
- Define a new simulation with weights that are a proper function of gen level kinematics

$$W(gen) = p_{weighted}$$

$$MC(gen)/p_{MC}(gen)$$

Omnifold

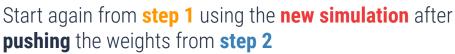
Reco level

Iteration 1

Start again from **step 1** using the **new simulation** after **pushing** the weights from **step 2**

- Guaranteed convergence to the maximum likelihood estimate of the generator-level distribution when number of iterations go to infinite
- In practice, less than 10 iterations are enough to achieve convergence

Iteration N



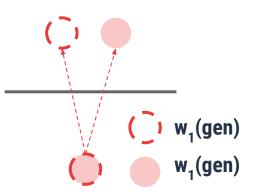
- Guaranteed convergence to the maximum likelihood estimate of the generator-level distribution when number of iterations goes to infinite
- In practice, less than 10 iterations are enough to achieve convergence

Why doesn't omnifold converge in a single iteration

Reco level

After step 1 () w₁(reco) w₂(reco)

After step 2

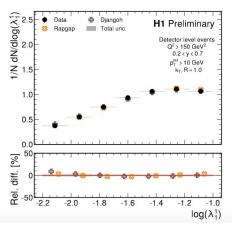


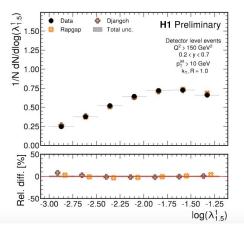
We always need to push and pull weights that are often calculated using different kinetic information: **reco** and **particle level**

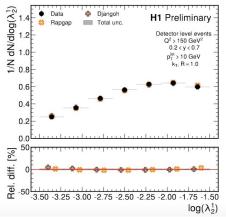
- After step 1, the same Gen event can give rise to distinct reco events (the process is stochastic!)
- That is fixed by step 2, which acts as a regularizer, but since data is not used, the unfolded response moves away from the maximum likelihood

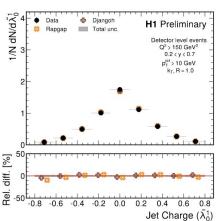
Generator level

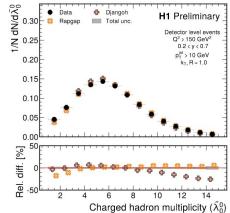
Total experimental uncertainty at reconstruction level at the **% level**!

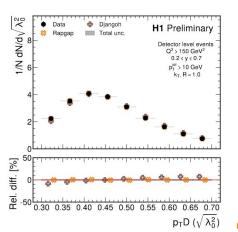












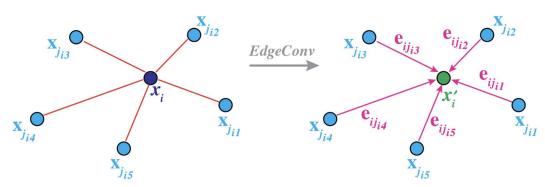
Systematic uncertainties

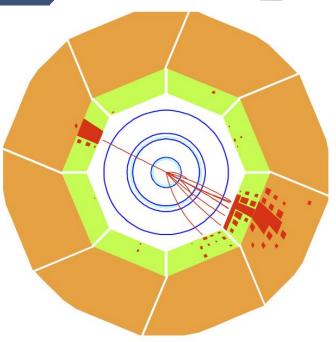
Systematic uncertainties currently considered

- HFS energy scale: +- 1%
- HFS azimuthal angle: +- 20 mrad
- Lepton energy: +- 0.5% (mainly affects Q²)
- Lepton azimuthal angle: +- 1 mrad (mainly affects Q²)
- Model uncertainty: differences in unfolded results between Djangoh and Rapgap
- **Non-closure uncertainty:** Differences between the expected and obtained values of the closure test
- Statistical uncertainty: Standard deviation of 100 bootstrap samples with replacement

Extracting particle information

- Particle information is extracted using a Point cloud transformer* model
- Model takes kinematic properties of particles as inputs
- Connect **k=10** nearest neighbors in η - φ to learn the relationship between particles.
- Built in symmetries: permutation invariance
- Consider up to 30 particles per jet





Extracting particle information

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A group of <u>people</u> sitting on a boat in the water.

A <u>stop</u> sign is on a road with a mountain in the background.

A giraffe standing in a forest with trees in the background.

Attention was introduced in the paper: <u>Attention is all you need</u>

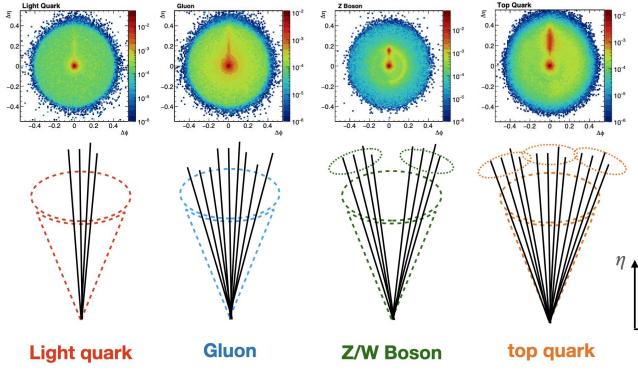
Attention for graphs introduced in paper Graph Attention Networks

Transformers are the state-of-the-art for NLP, computer vision and also graphs!

A little <u>girl</u> sitting on a bed with a teddy bear.

Figure from arXiv:1502.03044

PCT: Results



- For jet tagging, we can investigate what the transformer considers important
- Top images: Where is the particle with highest attention w.r.t the most energetic particle in the jet?

PCT: Results

At the time of publication, leading performance in light quark vs gluon task

	Acc	AUC	$1/\epsilon_B~(\epsilon_S=0.5)$	$1/\epsilon_B \; (\epsilon_S = 0.3)$
ResNeXt-50 [17]	0.821	0.9060	30.9	80.8
P-CNN [17]	0.827	0.9002	34.7	91.0
PFN [33]	-	0.9005	$34.7 {\pm} 0.4$	-
ParticleNet-Lite [17]	0.835	0.9079	37.1	94.5
ParticleNet [17]	0.840	0.9116	$39.8 {\pm} 0.2$	$98.6 {\pm} 1.3$
ABCNet [18]	0.840	0.9126	$42.6 {\pm} 0.4$	$118.4{\pm}1.5$
SPCT	0.815	0.8910	$31.6 {\pm} 0.3$	93.0±1.2
PCT	0.841	0.9140	$43.2 {\pm} 0.7$	118.0 ± 2.2

PCT: Results

Similarly good when trained using a different dataset containing different particles

$\operatorname{Algorithm}$	Gluon	Light quark	W boson	Z boson	Top quark
		AUC			
DNN	0.9384	0.9026	0.9537	0.9459	0.9620
GRU	0.9040	0.8962	0.9192	0.9042	0.9350
CNN	0.8945	0.9007	0.9102	0.8994	0.9494
JEDI-net	0.9529	0.9301	0.9739	0.9679	0.9683
JEDI-net with $\sum O$	0.9528	0.9290	0.9695	0.9649	0.9677
SPCT	0.9537	0.9326	0.9740	0.9779	0.9693
PCT	0.9623	0.9414	0.9789	0.9814	0.9757

Different graph architecture