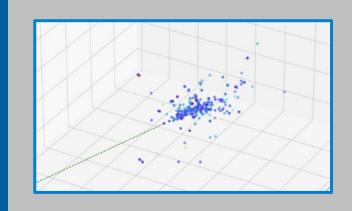
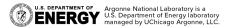
## 2<sup>nd</sup> Al4EIC Workshop, Oct. 10-14, William & Mary



# ML Particle Identification with Measured Shower Profiles from Calorimetry



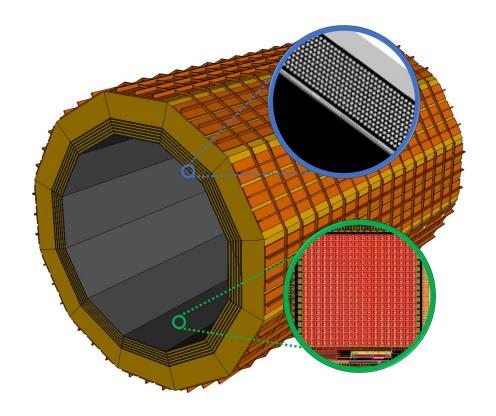
C. Peng (Argonne National Laboratory)



## **Imaging Calorimeter Concept**

#### **Hybrid Concept**

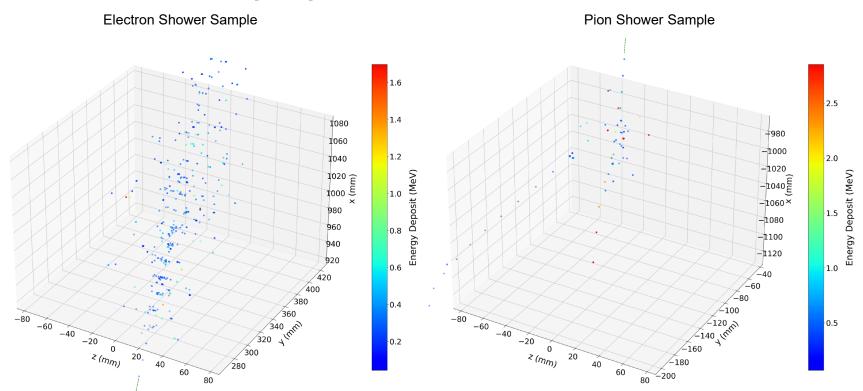
- Monolithic Silicon Sensors AstroPix (NASA's AMEGO-X mission)
- Scintillating fibers embedded in Pb (Pb/ScFi similar to GlueX Barrel Ecal)
- "Sandwiched" 6 layers of AstroPix and 5 layers of Pb/ScFi (~1X<sub>0</sub>) followed by a large chunk of Pb/ScFi
- Total thickness ~43 cm (~21 X<sub>0</sub>)
- Excessive amount of data
   (3D shower imaging)
   0.5 x 0.5 mm² pixel from AstroPix
   ~2 x 2 cm² light guide from Pb/ScFi







# **Event Sample (3D)**

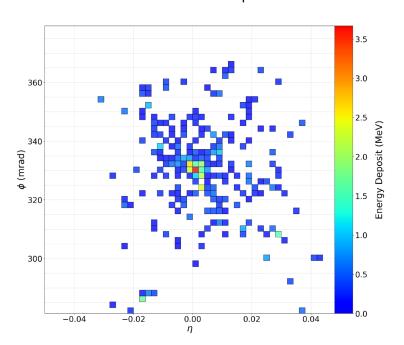




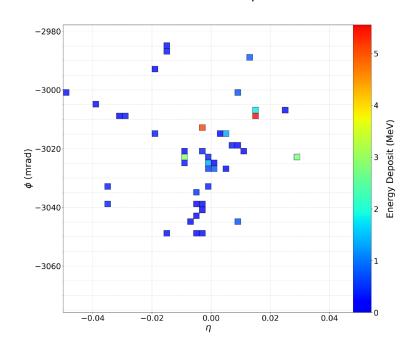


# **Event Sample (Projection)**

**Electron Shower Sample** 



#### Pion Shower Sample







## Pion Rejection with Machine Learning

- Two-step process
  - Apply a "traditional" E/p cut first to clean up samples
  - ML model is applied to the leftover samples
- Combining hits from AstroPix layers and ScFi layers
  - Limited 20 hits per layer, sorted by energy deposit, zero padding
  - 5 features per hit (layer\_type [0, 1], Edep, Rc, eta, phi)
  - Normalized all features to [0, 1]
  - Null eta values for ScFi hits (ignore z information from fibers)
- Adjust e:pi weighting in cost function to balance efficiency and rejection power





# Pion Rejection with Machine Learning

- Simple model
  - Sequential CNN + MLP
- 20 epochs of training
  - 100k events with 80% for training and 20% for validating
  - 100k events for benchmarking
- e-pi classification
  - Only two labels
  - Cut on  $P_{\pi}$

| Layer (type)                 | Output | Shape       | Param # |
|------------------------------|--------|-------------|---------|
| conv2d_225 (Conv2D)          |        | 29, 20, 48) | 1008    |
| max_pooling2d_225 (MaxPoolin | (None, | 14, 10, 48) | 0       |
| dropout_225 (Dropout)        | (None, | 14, 10, 48) | 0       |
| conv2d_226 (Conv2D)          | (None, | 14, 10, 96) | 41568   |
| max_pooling2d_226 (MaxPoolin | (None, | 7, 5, 96)   | 0       |
| dropout_226 (Dropout)        | (None, | 7, 5, 96)   | 0       |
| conv2d_227 (Conv2D)          | (None, | 7, 5, 48)   | 41520   |
| max_pooling2d_227 (MaxPoolin | (None, | 3, 2, 48)   | 0       |
| flatten_75 (Flatten)         | (None, | 288)        | 0       |
| dense_225 (Dense)            | (None, | 128)        | 36992   |
| dropout_227 (Dropout)        | (None, | 128)        | 0       |
| dense_226 (Dense)            | (None, | 32)         | 4128    |
| dense_227 (Dense)            | (None, | 2)          | 66      |

Total params: 125,282 Trainable params: 125,282 Non-trainable params: 0

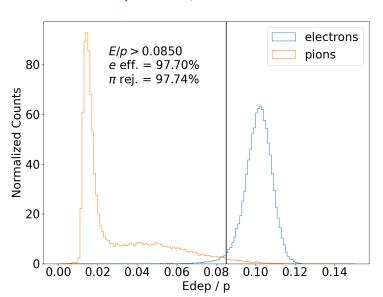


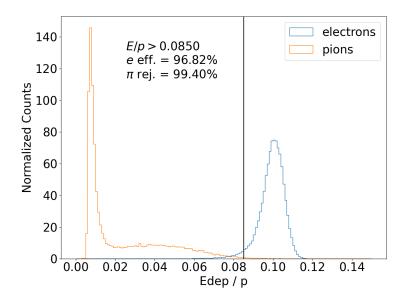


# E/p Cut with Current Simulation

### E/p cut at certain X<sub>0</sub>

#### 1.0 GeV/c particles, standalone BECal



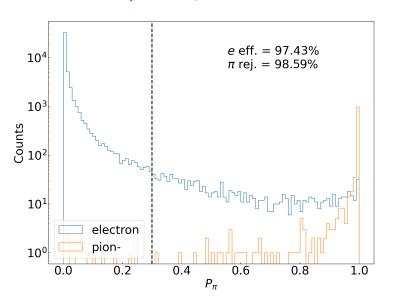


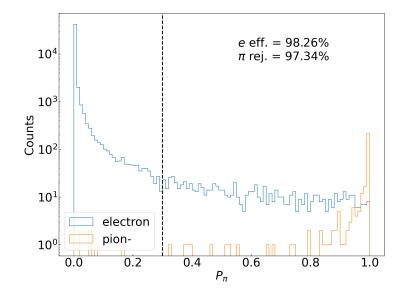


# **Likelihood Cut on ML Output**

#### Cut on probability of labeling

#### 1.0 GeV/c particles, standalone BECal







## Pion Rejection with Standalone BECal

#### Ideal case performance

6 layers

|         | Edep/p cut                 |        |           | ML                  |        |           | Combined |           |
|---------|----------------------------|--------|-----------|---------------------|--------|-----------|----------|-----------|
| p (GeV) | Cut                        | e Eff. | pion Rej. | e:pion<br>Weighting | e Eff. | pion Rej. | e Eff.   | pion Rej. |
| 0.1     | > 0.055 @ 9X <sub>0</sub>  | 99.83% | 1.15      | 1:10                | 95.17% | 378.54    | 95.01%   | 436       |
| 0.2     | > 0.070 @ 9X <sub>0</sub>  | 99.49% | 1.33      | 1:15                | 95.63% | 328.44    | 95.14%   | 436       |
| 0.5     | > 0.085 @ 9X <sub>0</sub>  | 97.26% | 18.99     | 1:20                | 97.98% | 68.89     | 95.29%   | 1308      |
| 1       | > 0.085 @ 9X <sub>0</sub>  | 97.70% | 44.28     | 1:40                | 97.43% | 70.81     | 95.19%   | 3136      |
| 2       | > 0.085 @ 9X <sub>0</sub>  | 96.82% | 166.63    | 1:40                | 98.26% | 37.63     | 95.14%   | 6269      |
| 5       | > 0.095 @ 20X <sub>0</sub> | 99.06% | 184.44    | 1:40                | 96.58% | 30.33     | 95.67%   | 5595      |
| 10      | > 0.095 @ 20X <sub>0</sub> | 98.61% | 236.68    | 1:40                | 97.04% | 26.38     | 95.69%   | 6243      |



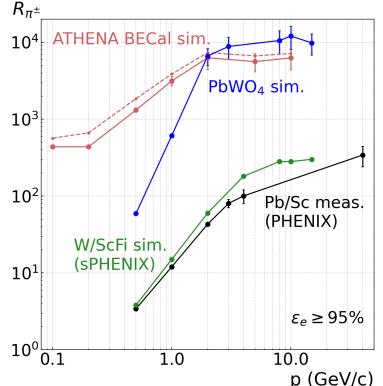


## Pion Rejection with Standalone BECal

Solid line: 6 AstroPix Layers

Dashed line: 9 AstroPix Layers

- Best e/pi separation for p < 2 GeV/c</li>
- Comparable to crystal calorimeter at higher momentum
- A factor of 30~100 boost on top of E/p cut for p > 1 GeV/c
- 500:1 rejection at lower momentum from when E/p does not work well

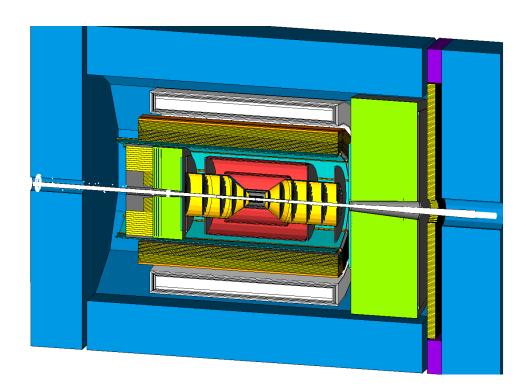






# **Effects from Materials and Magnetic Field**

- Materials contributed from other PID detectors inside the barrel
- Major materials from DIRC frames
- Strong magnetic field ~3T
- Performance study with the realistic evironment



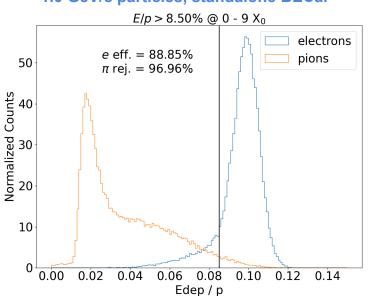


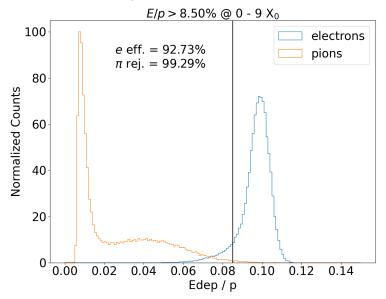


# E/p Cut with Current Simulation

### E/p cut at certain X<sub>0</sub>

#### 1.0 GeV/c particles, standalone BECal





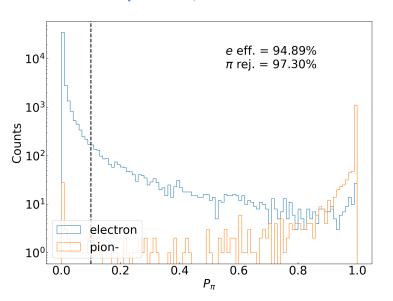


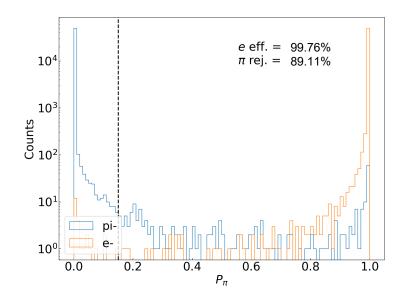


# **Likelihood Cut on ML Output**

#### Cut on probability of labeling

#### 1.0 GeV/c particles, standalone BECal

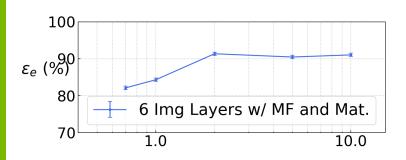


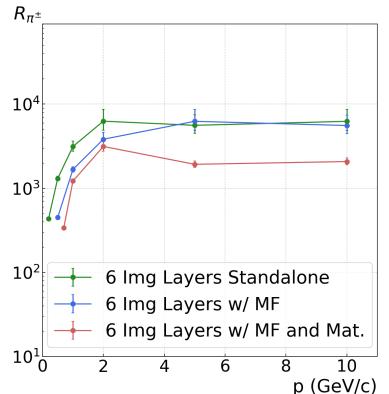




# **Effects from Magnetic Field and Materials**

- Electron efficiency > 95% for "Standalone" and "w/ MF" simulations
- Electron efficiency is 82% to 92% for "w/ MF and Mat." simulation









## **Summary**

- ML with shower imaging significantly improves particle identification
  - Boost pion rejection factor from traditional methods like E/p cut

- Possible future improvements
  - 2D cuts on dE/dx
  - Multi-views classification (More sophisticated NN model)
  - Generalize to more particles  $(\pi^0, \mu, ...)$

