Al-based data reduction for streaming DAQ

Jin Huang
Brookhaven National Lab

EIC: unique real-time system challenges

→ streaming DAQ and reliable real-time data reduction

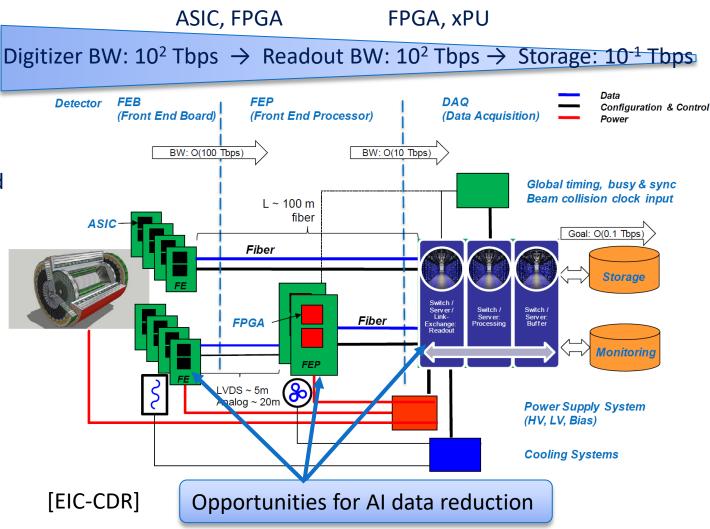
	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A$, $A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	10 ns	100 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \text{cm}^{-2} \text{s}^{-1}$
x-N cross section	50 μb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M N _{ch} /s	60M N _{ch} /s	30G+ N _{ch} /s

- ▶ Signal data rate is moderate → possible to streaming recording all collision signal
- ▶ But events are precious and have diverse topology → hard to trigger on all process
- \rightarrow Background and systematic control is crucial \rightarrow avoiding a trigger bias; reliable data reduction

Streaming readout data flow: EIC

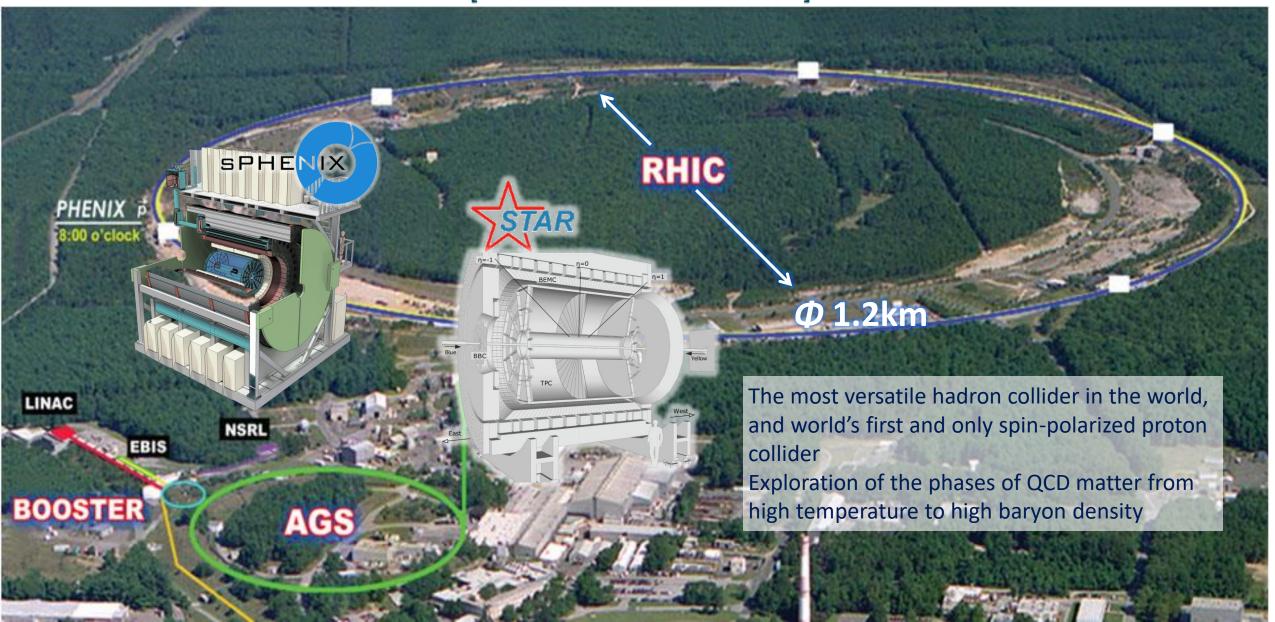
EIC streaming DAQ

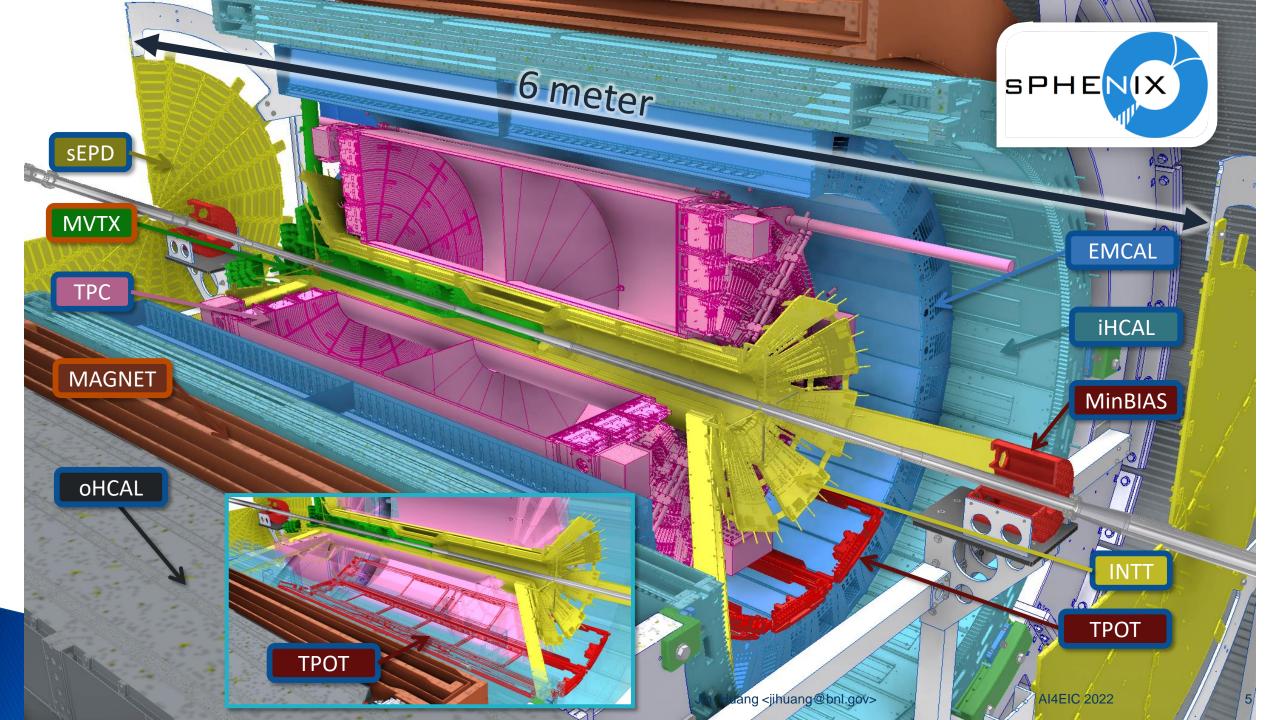
- → Triggerless readout front-end (buffer length : µs)
- → DAQ interface to commodity computing (FELIX-type interface as the example) Background filter if excessive background rate (buffer length : sec - min)
- → Disk (→ tape) storage of streaming time-framed zero-suppressed raw data (buffer length : days)
- → Online monitoring and calibration (latency : minutes - days)
- → Final Collision event tagging in offline production (latency : days+)
- Large scale prototyping with sPHENIX



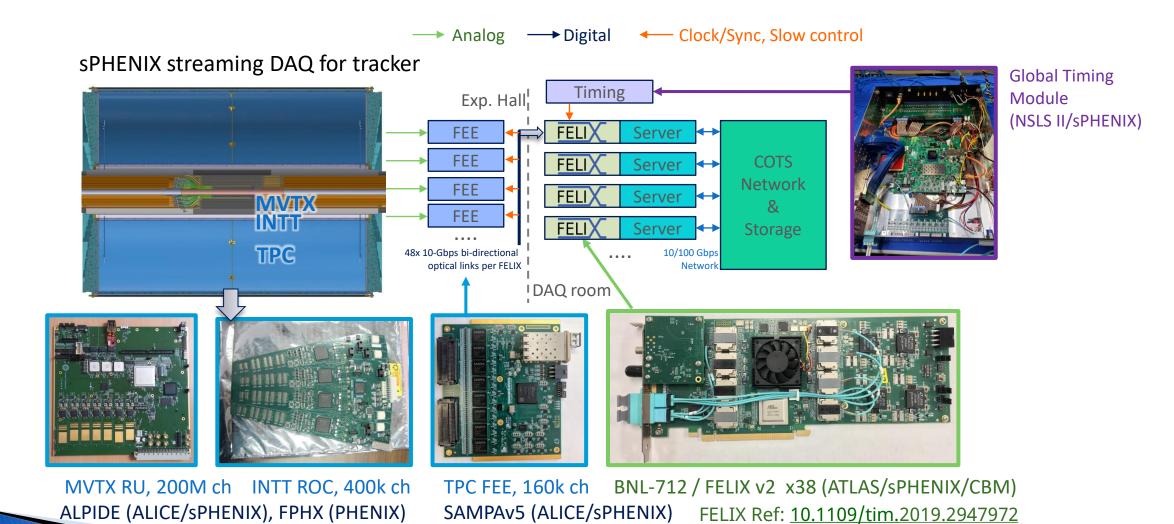
Relativistic Heavy Ion Collider (RHIC) in 2023+

[See also Cameron Dean's talk]





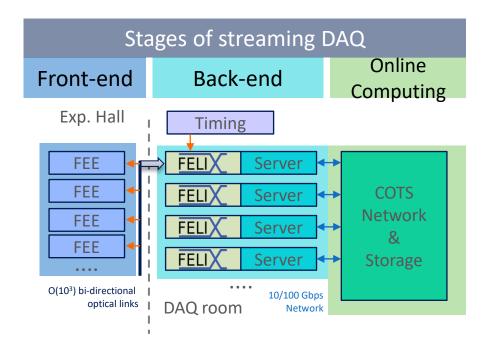
Streaming readout electronics for sPHENIX tracker



Similar role as PICe40 in LHCb / ALICE

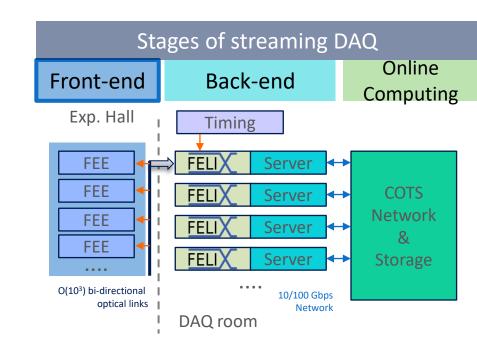
Al in streaming readout DAQ

- Main challenge: data reduction
 - Traditional DAQ: triggering was the main method of data reduction, assisted by high level triggering/reconstruction, compression
 - Streaming DAQ need to reduce data computationally: zero-suppression, feature building, lossy compression
- Opportunities for Real-time Al
 - Emphasize on reliable data reduction, applicable at each stages of streaming DAQ: <u>Front-end</u> <u>electronics</u>, <u>Readout Back-end</u>, <u>Online computing</u>
 - Data quality monitoring, fast calibration/reconstruction/ feedback
 - Could use "traditional" computing
 - Not focus of this talk, nonetheless important for NP experiments



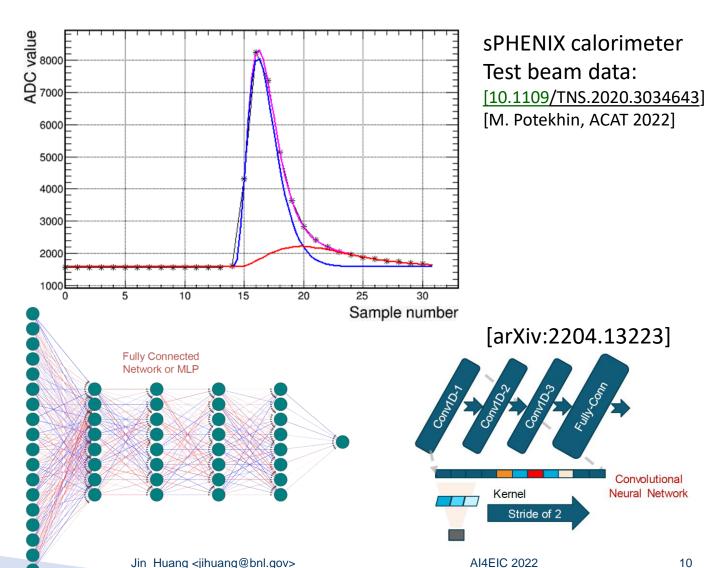
Streaming DAQ stage 1: Front-end electronics

- Perform digitization (ADC, TDC, pixel readout)
 - Common data reduction strategy to immediately apply zero-suppression
- Real-time AI data reductions:
 - Improved zero-suppression, e.g. small signal recovery
 - Feature building (example in next slides)
 - Compression (example in later slides)
- ▶ Target hardware: ASIC, (smaller) FPGAs
 - Common requirement of low-power consumption, radiation tolerant



ADC time series \rightarrow feature of amplitude and time

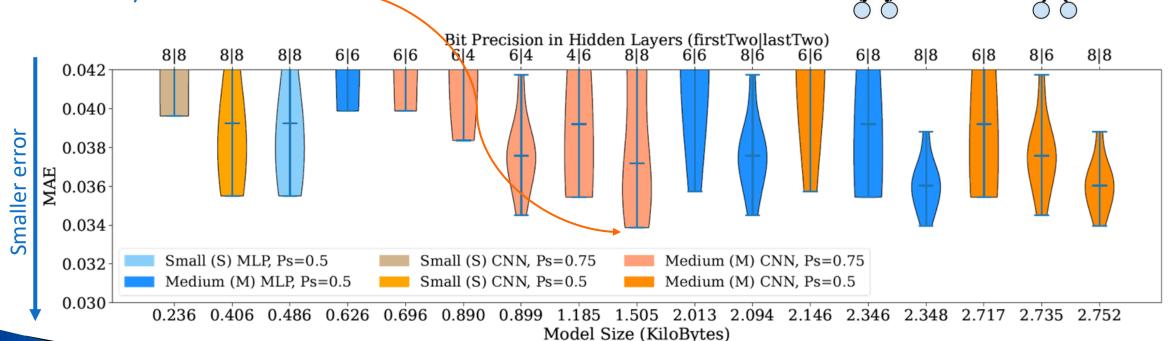
- Wave form digitizer is popular, output data in ADC time series
- ▶ In the front-end, NN can be used to extra features such as amplitude and time of arrival
 - See also [ATLAS, link], [M. Potekhin, ACAT 2022]
- ▶ Fit limited resource in FEE FPGA or ASIC:
 - Emphasizes on quantized-aware training training and pruning



Pruning + Variable Bit Quantization-aware Training

[S. Miryala et al 2022 JINST **17** C01039]

- Simulated LGAD waveform data
- Highly pruned (sparsity=0.75) CNN with 8bit fixed precision internally strikes good performance (smaller error) and small model size



Smaller model (resource need)

synapses

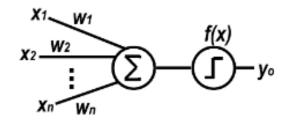
neurons

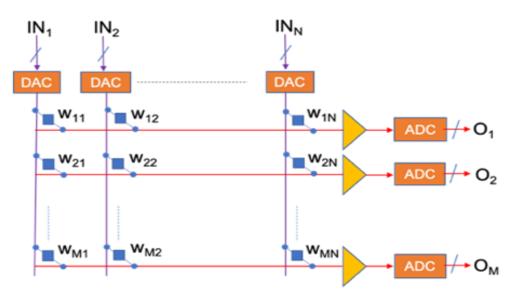
Novel hardware: in-memory computing

[S. Miryala, CPAD21, link]

- One viable AI-target hardware in FEE including digital processing in ASIC and FPGAs
- New opportunity emerges to perform in-memory computing that is low latency and energy efficient
- Example is Memristor-based crossbar arrays that perform Multiply & Accumulate (MAC) in one cycle

MAC in a neuron

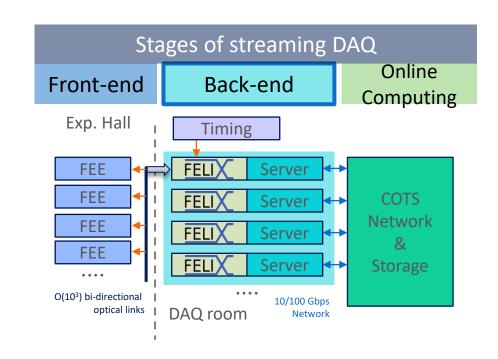




Memristor crossbar array, a Non-Von Neumann architecture for in-memory computing of neural networks

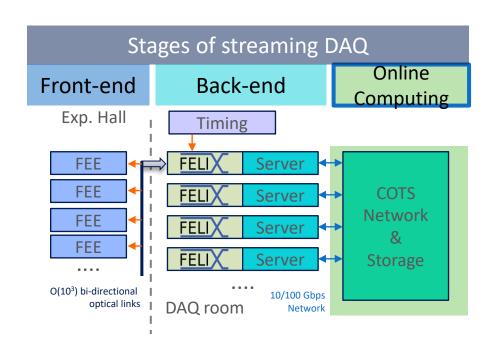
Streaming DAQ stage 2: Readout back-end

- Perform data aggregation and flow control
 - Common strategy include optical data receiver in large FPGA, routing data to server memory
- Real-time AI data reductions:
 - Higher level feature building
 - Selection of interesting time slices, background/noise rejection
 - See talks, including
 Nhan Tran, Sergey Furletov, Cameron Dean
- Target hardware: large-scale FPGAs



Streaming DAQ stage 3: Online computing

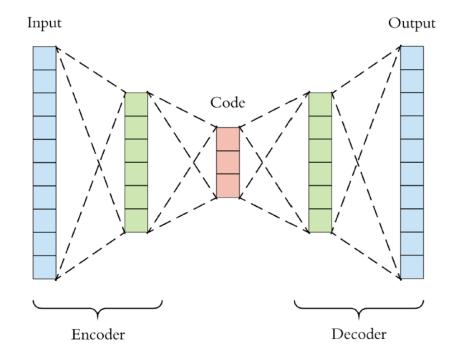
- Online computing is an integral part of streaming DAQ
 - Blending the boundary of online/offline computing
- Real-time AI data reductions:
 - Lossy compression
 - Noise and background filtering
 - Higher level reconstruction
- Target hardware:
 - Traditional computing: CPU, GPU
 - Novel Al Accelerators (next slides)



Lossy compression of data, noise filtering

 Auto-encoder (AE) is a natural choice for unsupervised learning for lossy data compression: streaming data reduction

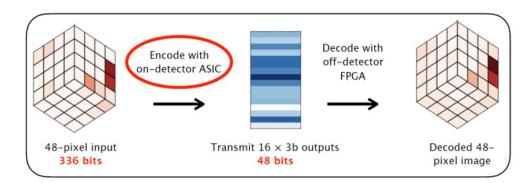
Simple auto-encode neural network



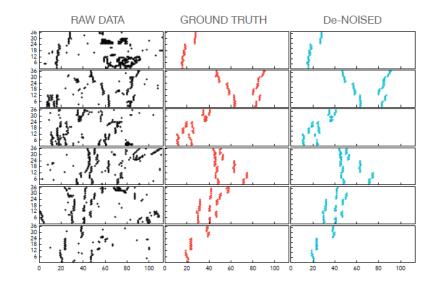
Lossy compression of data, noise filtering

- Auto-encoder (AE) is a natural choice for unsupervised learning for lossy data compression: streaming data reduction
- Same network architecture can be adopted with supervised learning to filter out noise: further data reduction, speed up reconstruction
- See also in CMS HGCal ASIC, CLAS12 tracker offline reco.

CMS HGCal compression ASIC, [10.1109/TNS.2021.3087100], last talk

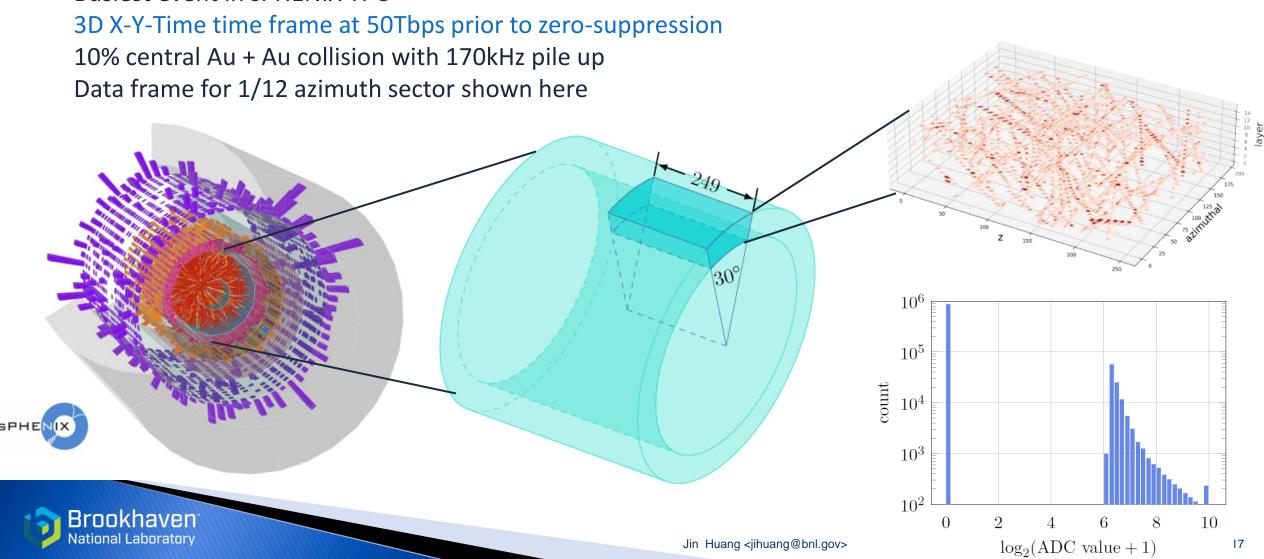


CLAS12 Drift Chamber offline AE de-noise [link]



Data of time projection tracker at sPHENIX

Busiest event in sPHENIX TPC

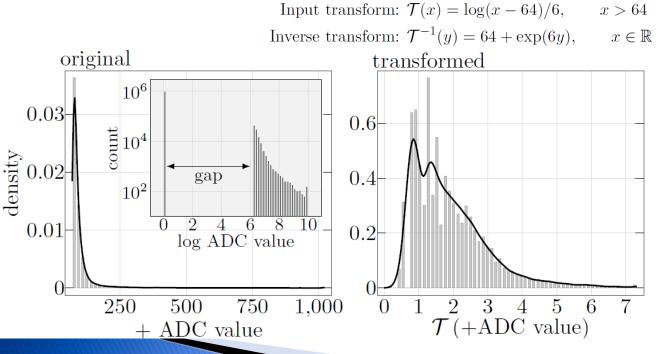


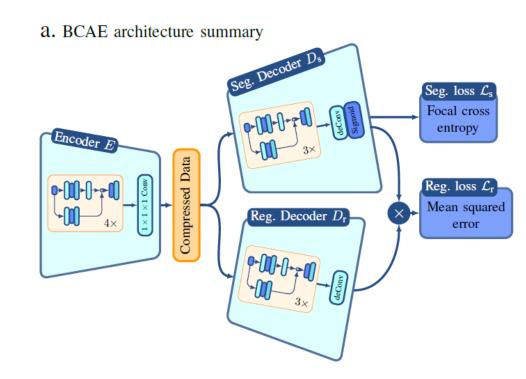
Bicephalous Convolutional Auto-Encoder (BCAE) and

input transform

[Y. Huang, ICMLA21, https://github.com/BNL-DAQ-LDRD/NeuralCompression]

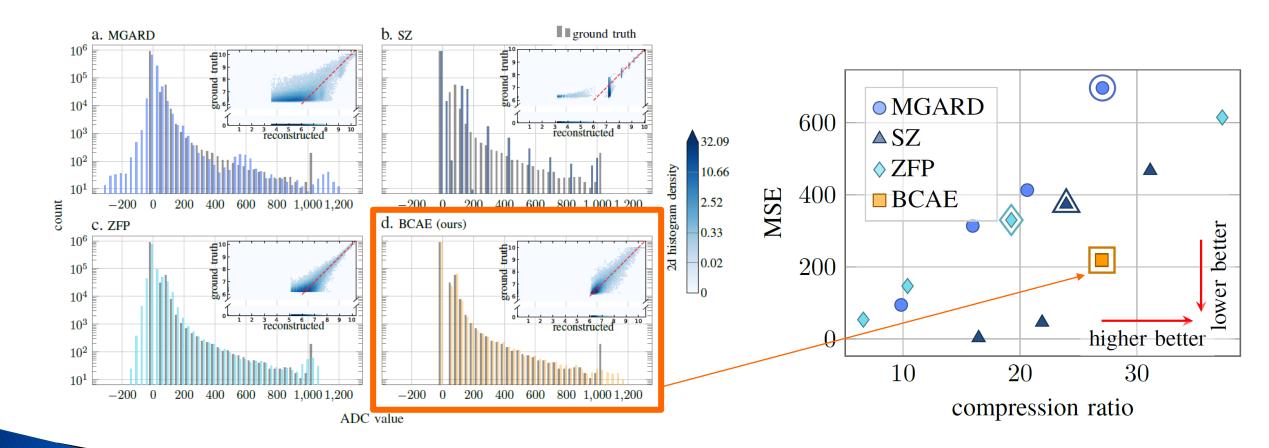
- Input transform: fill in the zero-suppression gap and make ADC distribution much less steep
- Bicephalous decoder: +classification decoder to note the zero-suppressed ADC voxels and +noise voxels in TPC, based on 3D CNNs





Comparison with existing algorithm

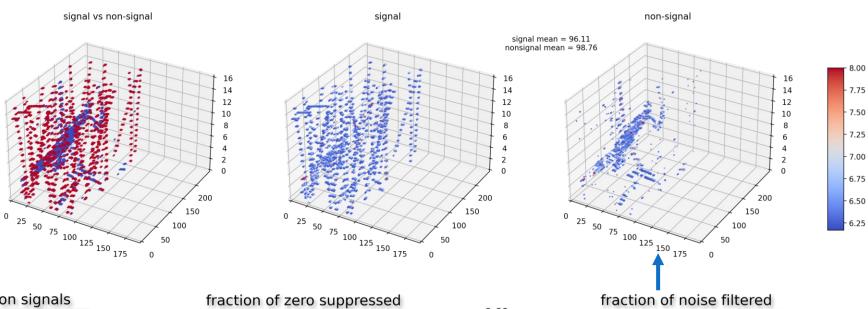
[Y. Huang, ICMLA21], BCAE Code and model available at https://github.com/BNL-DAQ-LDRD/NeuralCompression

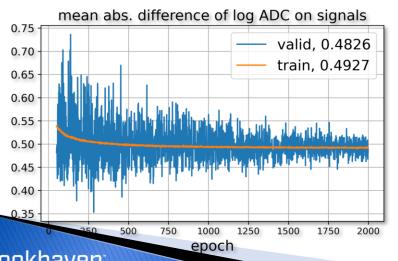


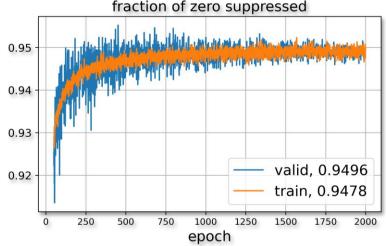
BCAE Compressor with noise filtering

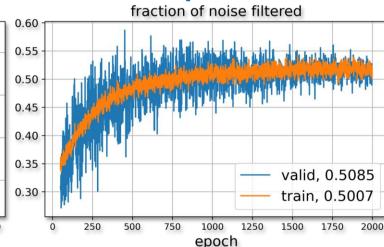
[Y. Huang, IEEE RT22, link]

sPHENIX simulation 3 MHz p+p TPC streaming data BCAE with compression ratio 204:1 and 95% signal retention (recall)





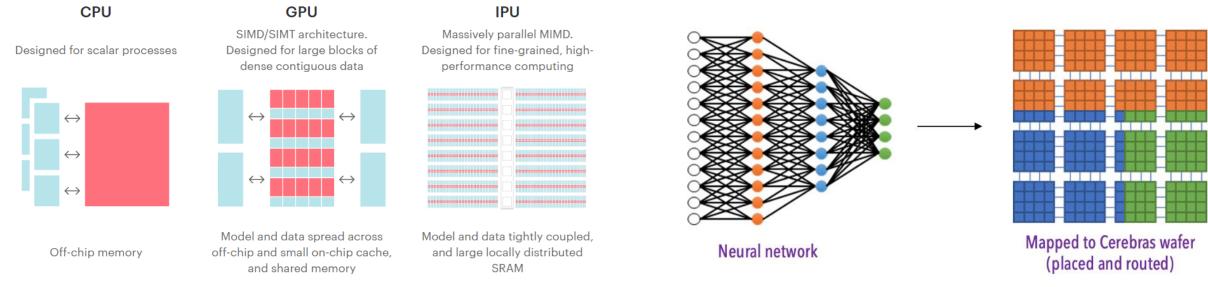




Novel AI Accelerators for streaming DAQ

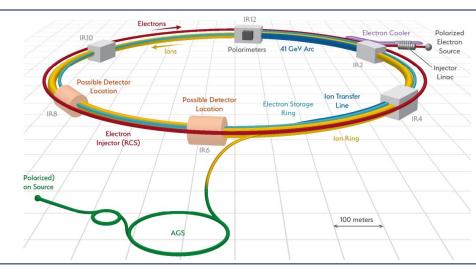
[See also talks in architecture session]

- ▶ A new family of AI chips is emerging with non-von Neumann Architectures
 - Designed for NN computing, similarities to ML on FPGA
 - Massive on-chip activation/weight storage on sRAM
 - Good integration with popular AI tools
 - Energy efficient and high throughput
- Significant throughput gain with testing of BCAE on Graphcore IPUs, a Dataflow Architectures processor for AI application



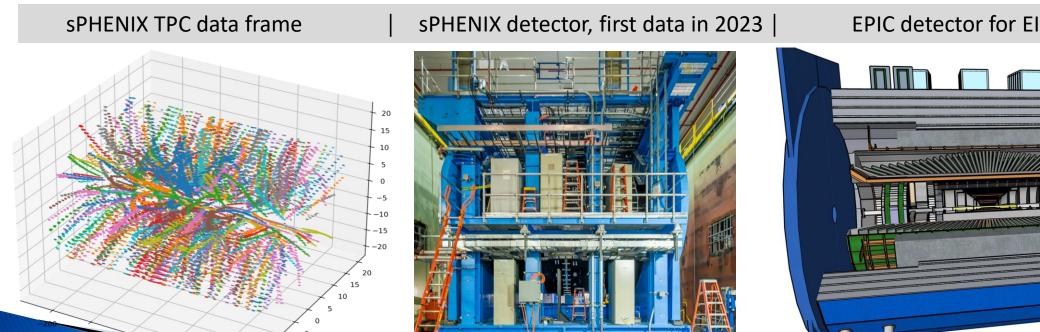
Summary

- Streaming readout is a paradigm shift adopted by many modern Nuclear Physics (NP) experiments, driven by diverse event topologies and stringent bias control
- ▶ Requiring large factors of data reduction computationally and at high throughput
- Driving the need of Al-based algorithms and platforms
 - Feature extraction, compression, signal selection/background noise removal, reconstruction
 - Utilizing ASIC, FPGA, and emerging novel AI accelerators

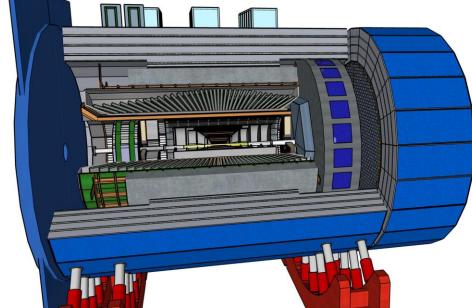


Join us! A Postdoc Advertisement

- ▶ BNL plan to open a postdoc position in coming months on real-time Albased data reduction for sPHENIX and EIC
- Interested candidate please contact jhuang@bnl.gov

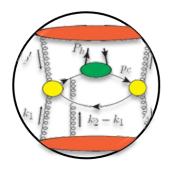


EPIC detector for EIC in 2030+



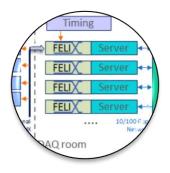
Extra information

Streaming DAQ and real-time AI: A new and paradigm shift for experiments in next NP LRP



NP Physics

- Diverse topology
- Stringent sys. Ctrl
- Max data preservation



Streaming DAQ

- New physic capability accessible only via streaming DAQ
- Example: adopted for sPHENIX and EIC
- Require data reduction computationally

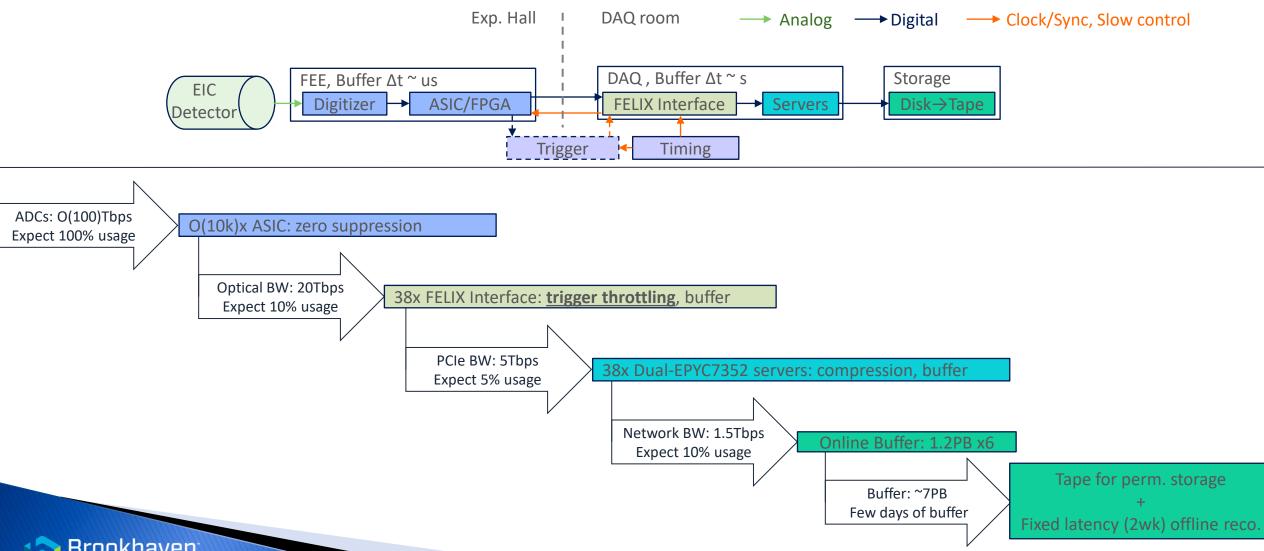
Opportunities for Realtime Al

- Specialized AI algorithm for reliable and high-performance data reduction
- Novel hardware emerging for highthroughput AI computing

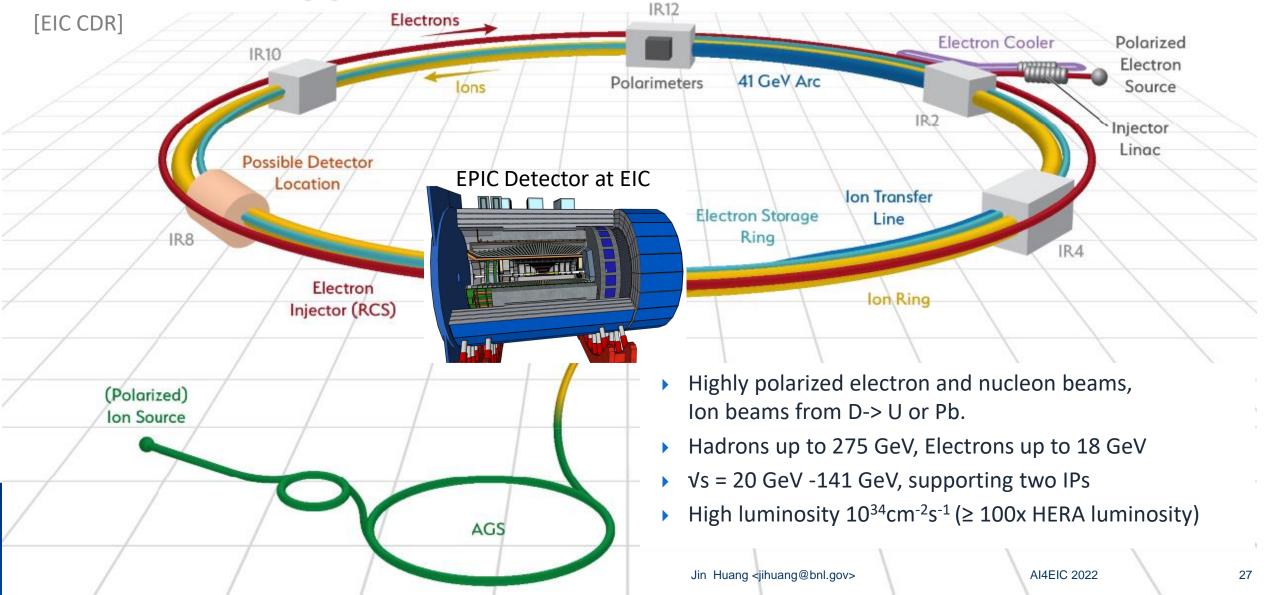
Physics need \rightarrow Streaming DAQ \rightarrow Opportunity for real-time AI \rightarrow Enhanced physics program

Jin Huang <jihuang@bnl.gov>

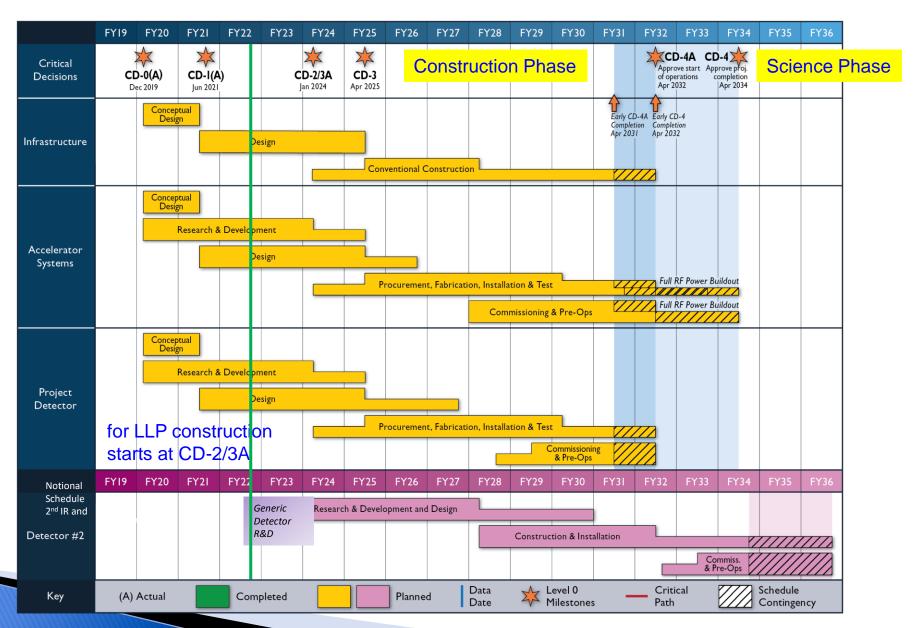
sPHENIX Streaming data flow



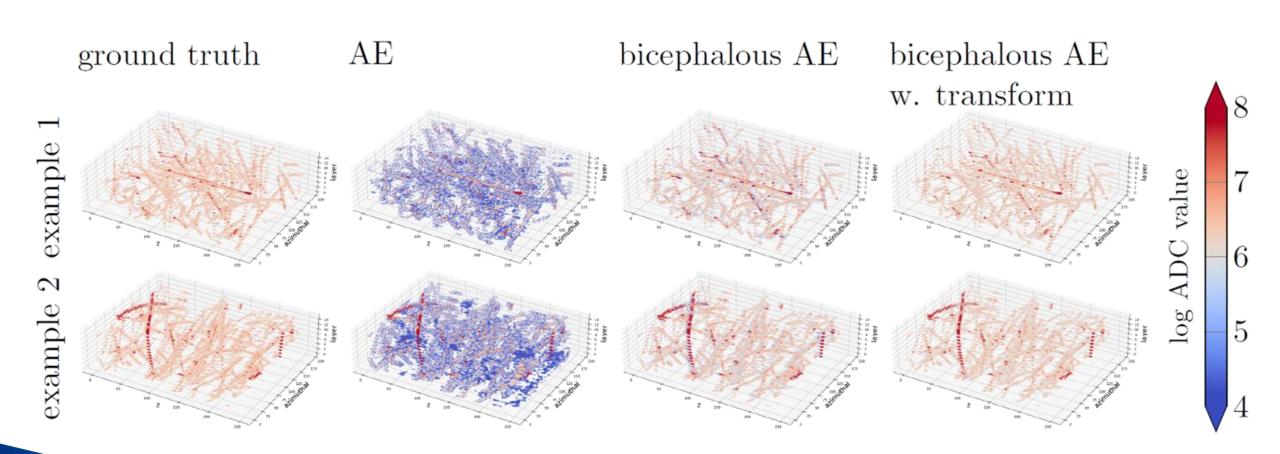
RHIC transition to the Electron Ion Collider (EIC) CD-1 Approval in 2021, Science Phase in 2030+



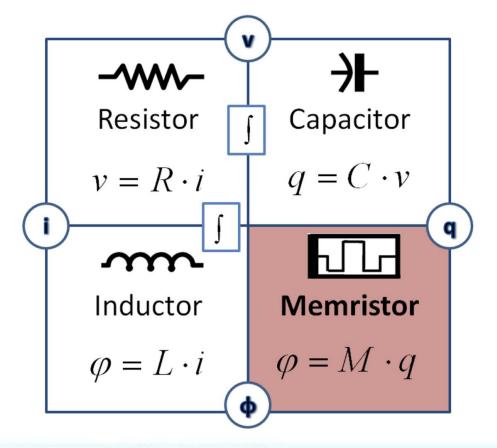
High Level EIC Reference Schedule

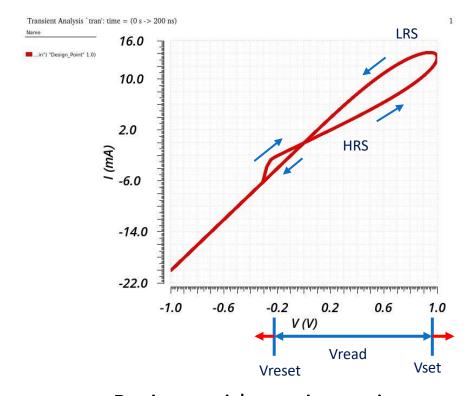


Results from Bicephalous AE with transform [arXiv:2111.05423]



Memristor



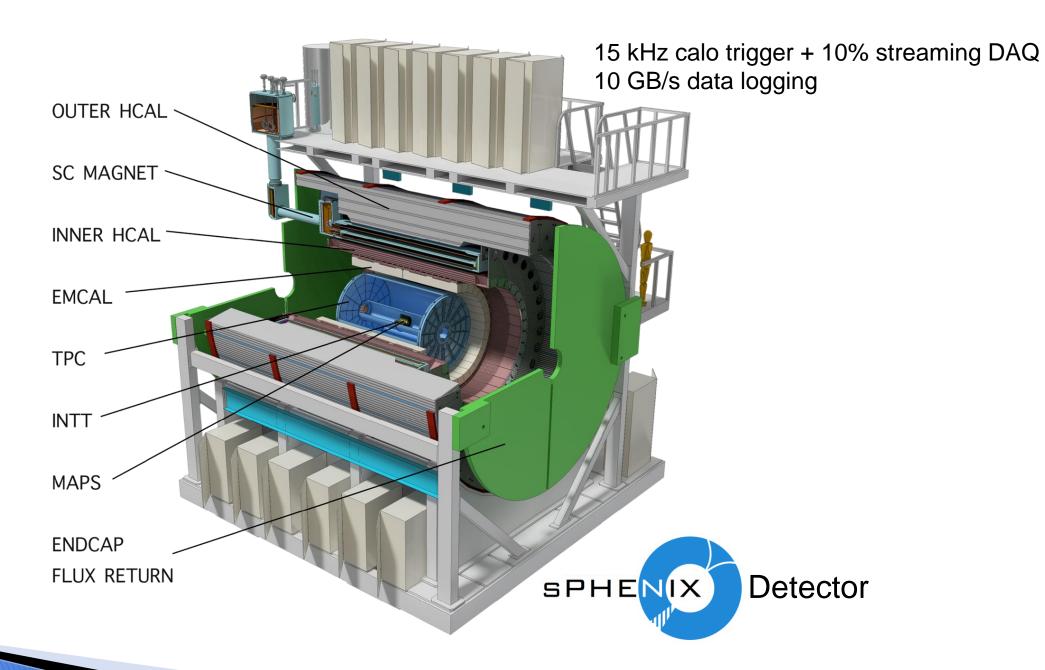


- Resistor with varying resistance
- Low Resistive State (LRS)
- High Resistive State (HRS)

IEEE TRANSACTIONS ON CIRCUIT THEORY, VOL. CT-18, NO. 5, SEPTEMBER 1971

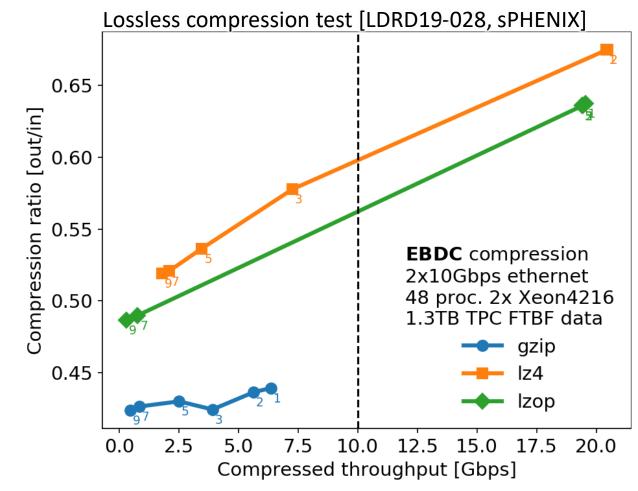
Memristor—The Missing Circuit Element

LEON O. CHUA, SENIOR MEMBER, IEEE



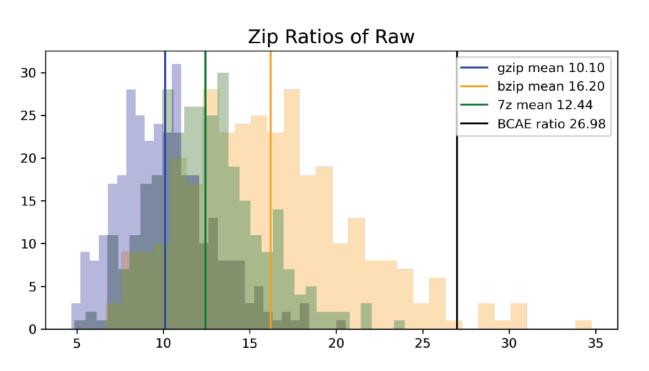
Online computing for streaming data - compression

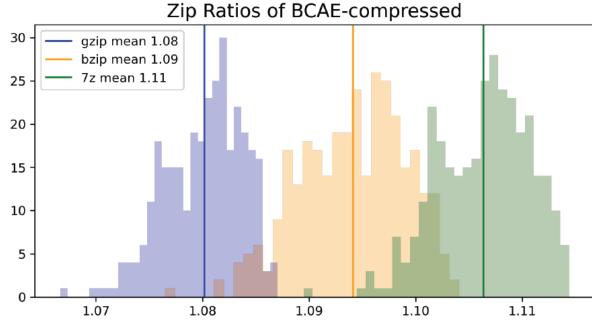
- Lossless compression
 - Compress by ~1/2
 - Well established fast compression algorithm
- Lossy compression
 - Opportunity for unsupervised machine learning based on data
 - This work: Bicephalous Convolutional Neural Encoder for compressing zerosuppressed data and noise filtering



Compressibility check: thanks to suggestion from Brett!

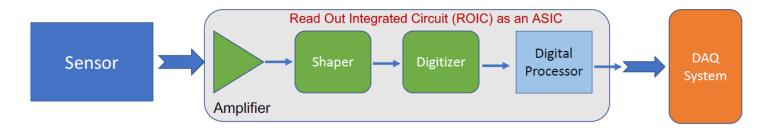
▶ The lossy-compressed code is hardly compressible further losslessly

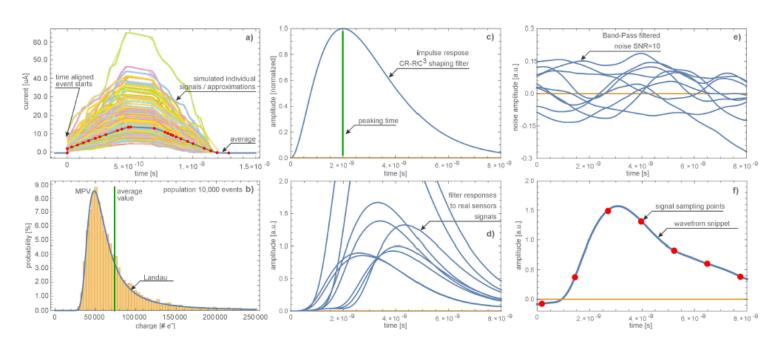




LGAD signal sample [LDRD 21-023, JINST in press]

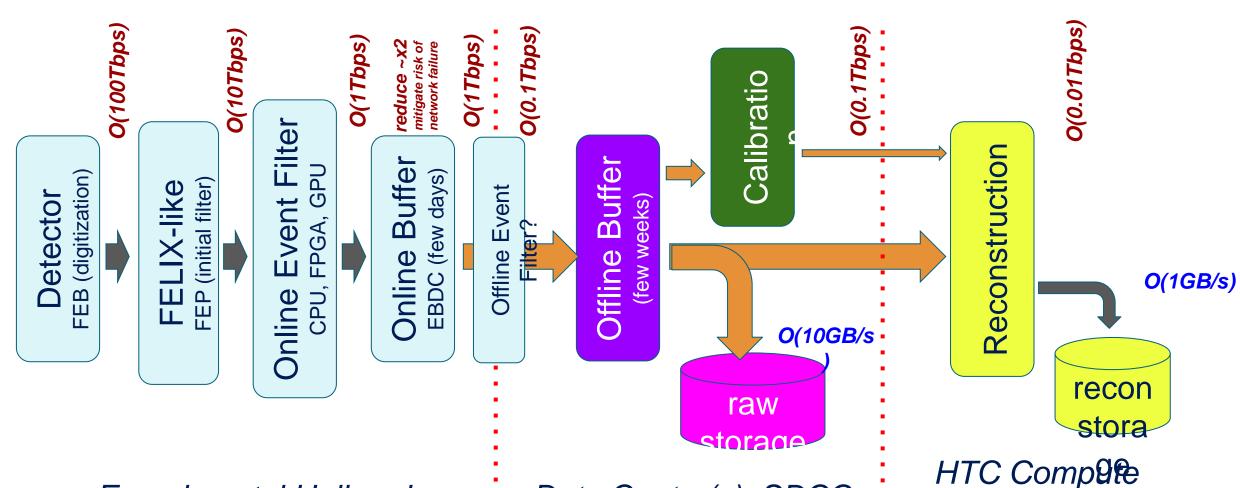
Current focus:
Deep dive into NN
regression for LGAD
tracker-TOF data





Blured boundary with offline computing

Countesy: David Lawrence ECCE computing model [link]



Experimental Hall and Counting House (Project

-UHOS

Data Center(s): SDCC [,JLab, ...] (Operations Funds) Facilities
SDCC ,JLab, ...
(Operations)