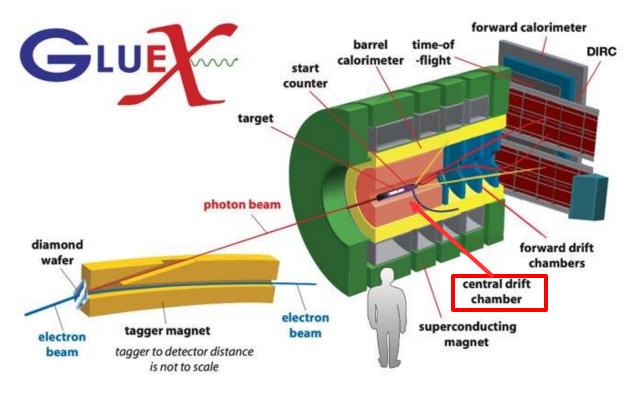
Al Experimental Control (and calibration) --GlueX Central Drift Chamber

The AI for Experimental Controls (AIEC) Team:

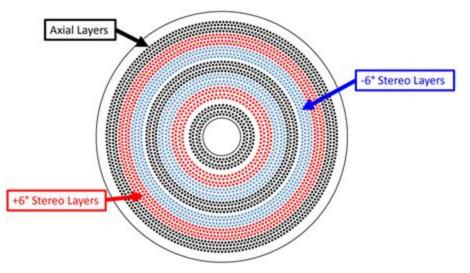
Thomas Britton, David Lawrence, Naomi Jarvis*, Diana McSpadden, Torri Jeske, and Nikhil Kalra Thomas Jefferson National Accelerator Facility, VA, USA *Carnegie Mellon University, PA, USA

AI4EIC 2022



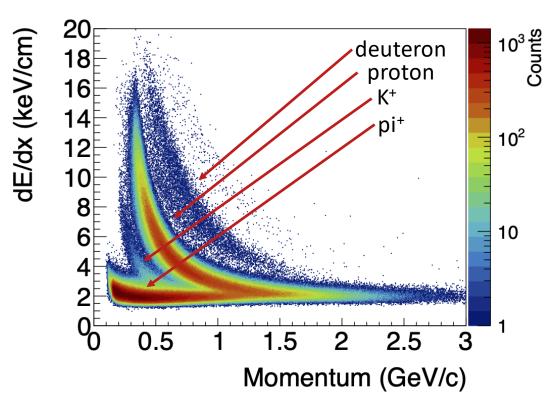
GlueX Experiment at Jefferson Lab

Designed to search for exotic hybrid mesons produced in photoproduction reactions and study the hybrid meson spectrum


GlueX Central Drift Chamber (CDC)

- Used to detect and track charged particles with momenta p > 0.25 GeV/c
- 1.5 m long x 1.2 m diameter cylinder
- 3522 anode wires at 2125 V inside 1.6 cm diameter straws
- 50:50 Ar/CO₂ gas mix

- Requires two calibrations: chamber gain and drift time-to-distance
 - Gain Correction Factor (GCF):
 - GCF calibrations have most variation +/- 15%
- Has one control: operating voltage
 - Nice to start with something simple/easy to vet

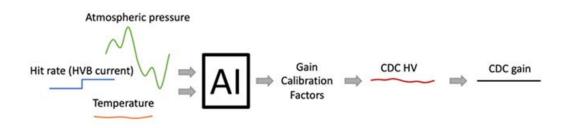


CDC Calibrations

- Gain affects PID selections in analysis
 - Known sensitivity to environmental conditions
 - Atmospheric pressure
 - Temperature
 - Known sensitivity to experimental conditions
 - Beam conditions change with the experiment
 - Traditionally:
 - GCF obtained from Landau fit to amplitudes
 - Post iterative ttod
 - Calibration constants are generated per run
 - Approximately 2 hours of beam time Partly due to atm changes

Conventional Calibration and Motivation for ML

Motivation: Conventional vs. Online, ML Calibration Paradigms


Conventional

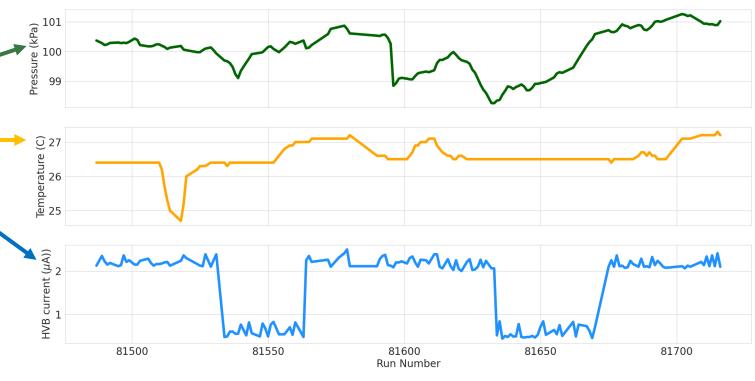
- Calibrate: calibration values iteratively, produced after the experiment
 - ~2 hour runs
- Control: CDC operating voltage is fixed at 2125 V

Online and ML

- Control: Stabilize detector response to changing environmental/experimental conditions by adjusting CDC HV
- Calibrate: online calibration values produced during the experiment

Approach

- Can we predict existing GCF and calculate the recommended HV using data that is readily available before/as a run begins/while running?
 - Similar for time to distance
- Can we control the HV of the CDC to stabilize gain during an experiment?
 - Think coarse and fine adjustment
 - Potential removal of the need to calibrate
- Does the system generalize for differing conditions?
 - How well?
 - Do we trust interpolations and extrapolations?
 - Uncertainty quantification (UQ)
 - Uncertainty quantification (UQ)
 - Uncertainty quantification (UQ)


Uncertainty by craiyon.com

Can we predict GCFs: our input features

Can we predict GCFs using data that is readily available as a run begins?

For input features:

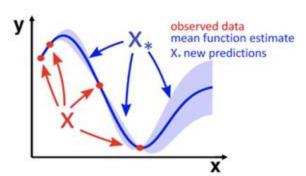
- Data extracted from Experimental Physics Industrial Controls System (EPICS)
 - Atmospheric pressure
 - Gas temperature
 - Current drawn from CDC HV boards (proxy for beam current)
- All readily available during the experiment
- Not dependent on other detectors
 - No reconstruction!

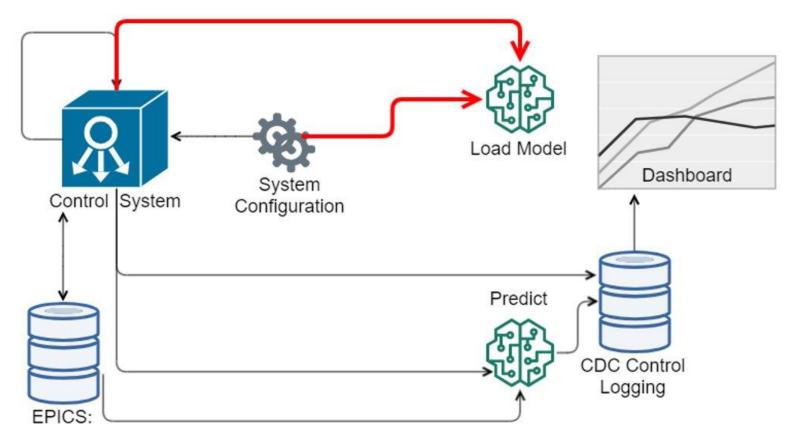
Can we predict GCFs: our model

ML Technique

Gaussian Process (GP)

- 3 features:
- atmospheric pressure within the hall
 - **temperature** within CDC
 - CDC high voltage board current -> a proxy for the intensity of the electron beam current
 - 1 target: the traditional Gain Correction Factor (**GCF**)
- GP calculates PDF over admissible functions that fit the data
- GP provides the standard deviation
 - we can exploit for <u>uncertainty quantification</u> (UQ)
- We used a basic GP kernel:
 - Radial Basis Function + White
 - Tested isotropic (1 length scale) and anisotropic (length scale per input variable) kernels

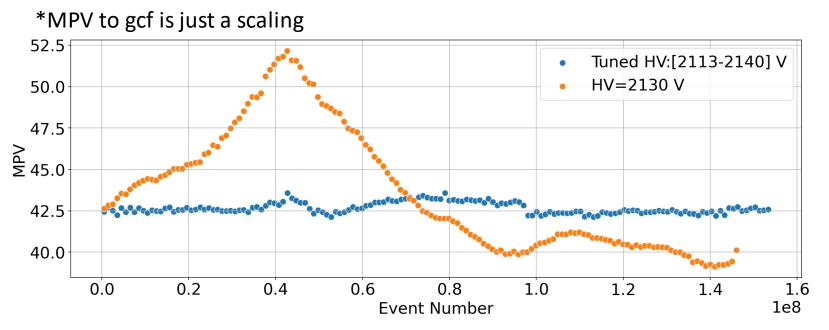



Illustration training a Gaussian process

Threshold was better than 5% error

RBF kernel (length scale(s))	R^2	RMSE	Mean % err
Isotropic (1.412)	0.97	0.002	0.8%
Anisotropic (1.4,1.17,.171)	0.97	0.002	0.8%

The system



- On the fly configuration
 - Always on. Not always recommending/controlling
- UQ threshold dictates projection
 - Never be too far out of bounds
- Full logging for future investigations
 - Interpretability studies

Experimental Physics and Industrial Control System

Commissioning (cosmics)

Big success!

- Half the CDC (orange) at fixed HV
- The other half (blue) had its high voltages adjusted every 5 minutes

- The drop at 1.0 was due to a temperature adjustment to bring things back in line with nominal running
 - It is a small effect

Running (CPP)

- Differences to GlueX
 - Lower hybi
 - Quarter of the CDC electronics borrowed for a CPP specific downstream detector
 - Solid target
- Update HV at start of run
- Atmospheric pressure didn't see as wild variations
 - If only we could control the weather....
- Almost all the time was spent well above our UQ bubble
 - ~.006

HV not controlled

HV controlled

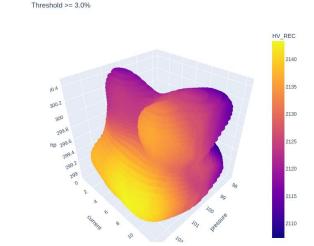
Running (Primex)

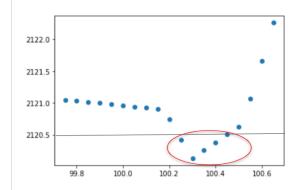
- Also dissimilar to GlueX
 - Lower current but closer to nominal running
 - Whole CDC
 - Much closer to the uncertainty threshold
- Update HV at start of run not during
- Anomalous behavior seen
 - Up atm should be up HV
 - Everything else flat
- Why?



Anomalous behavior

- How bad is it?
 - 1% diff in gain ~ 1V diff
 - Maximal error 4V => gain error of 4%
 - Below our 5% target
- Still within tolerances
- Looking at the UQ corrected HV versus the raw HV we see a bifurcation
 - Anomalous behavior strictly from the UQ correction

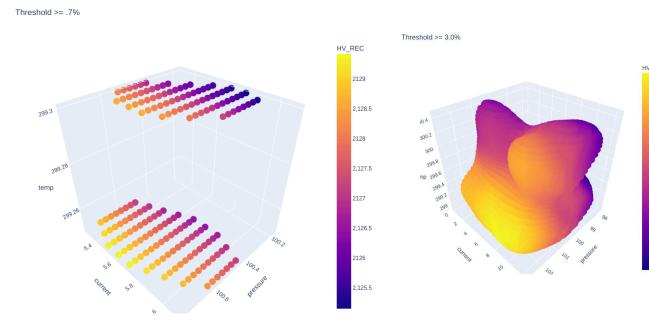


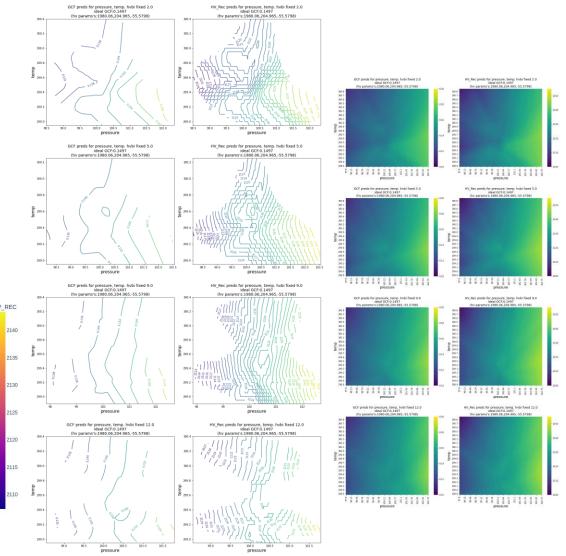

Subtleties

- Our uncertainty surface is not really a bubble
 - By that I mean purely convex

- Any dents or divots can affect the projection
 - —Imagine being at the center of a bowl, tiny movements can send you from one side of the bowl to the other possibly with drastically different HV recommendations
- Maybe we didn't see this in CPP because the distance away from the surface was much greater
 - When you are far from the surface it takes much greater motion to switch points of projection

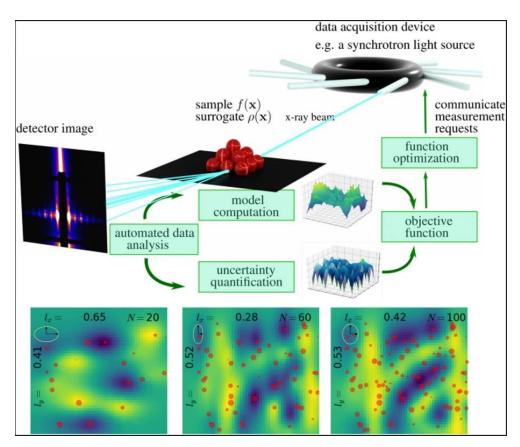
The "divot" in our uncertainty vertices


Here is one! In a slice of our surface


Raw HVBI: 9.0,	Raw Temp: 298.85										
Raw Pressure:	99.9298 UQ Pressure:	99.95 UQ	Q hvbi: 9	9.0	UQ temp:	298.9	UQ GCF:	0.1429838685738982	HV REC:	2120.979390944207 HV REC rounded: 2121.0	
Raw Pressure:	99.9734 UQ Pressure:	99.95 UQ	Q_hvbi: 9	9.0	UQ temp:	298.9	UQ GCF:	0.1429838685738982	HV REC:	2120.979390944207 HV_REC rounded: 2121.0	
										2120.960577904075 HV_REC rounded: 2121.0	
										2120.9214342124624 HV_REC rounded: 2121.0	
Raw Pressure:	100.235 UQ Pressure:	100.25 U	UQ hvbi:	9.0	UQ temp:	298.9	UQ GCF:	0.14213505840759677	HV REC:	: 2120.4169039125636 HV REC rounded: 2120.	. 0
Raw Pressure:	100.279 UQ_Pressure:	100.3 UQ	Q_hvbi: 9	9.0	UQ_temp:	298.9	UQ_GCF:	0.14170531958731739	HV_REC:	2120.1308776985165 HV_REC rounded: 2120.0)

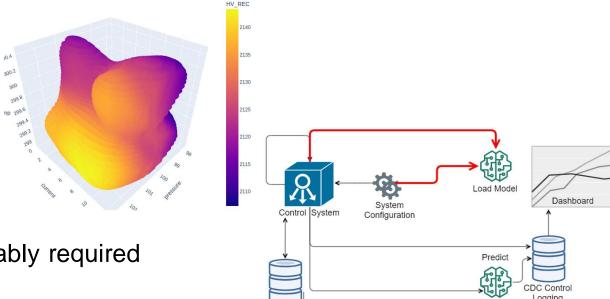
Analysis/Debugging the Black Box

- Plot the surface and the point(s) of measurements
 - Ends up being a bug in projection but indicates a closer look at the UQ
- Looks less like pancakes/a bubble and more like swiss cheese
 - Pockets of space that are "inside" but above UQ



Towards Self-Learning

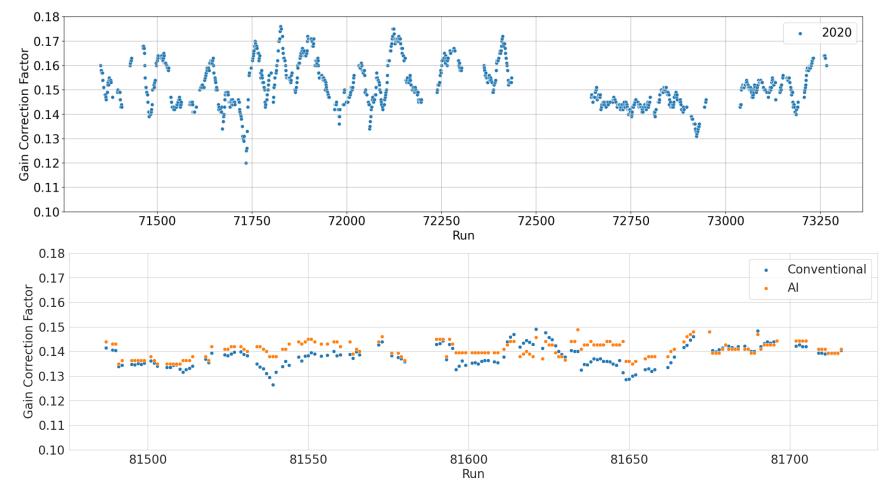
- One application of ML is in experimental design (parameter selection)
 - Better/more efficient than exhaustive grid search
 - Based on the idea that all data is not created equal
- Turning things on its head, it may be possible to use a similar system to decide whether it is better for us to take new data or use our projection
 - Complex error surface
- There are lots of avenues for research into UQ and its actionable utilization



https://www.nature.com/articles/s41598-020-74394-1

Conclusions/Future

- Successfully deployed an AI system to control and calibrate the GlueX CDC
 - ~ 1% error in predicting gcf (<< promised 5%)
 - Able to stabilize gcf via HV control
 - The system is reconfigurable on the fly
 - Uses estimated UQ in an actionable way
 - Lots of subtilties and avenues for research
 - Complex 3D surface
 - Limited data in some dimensions
 - Islands of data
- Looking to finishing TtoD
 - HV dependence so a bit of bootstrapping probably required
- Probing other detectors and systems to apply these techniques
 - Potential self-learning to enable eminently deployable system which will only control when "confident" and efficiently learn when not



Backup slides

Calibrations with Al: Gain

- Al generated calibration constants agree with conventional gain calibration results
- GCF are more stable compared to GlueX 2020 run period

