

Graph Neural Network 101

Yihui "Ray" Ren (yren@bnl.gov)
Computational Science Initiative (CSI), BNL

2nd workshop on AI for the Electron Ion Collider 10-14 October 2022, William & Mary / Jefferson Lab

Brookhaven Supports Data-rich Experimental and Computational Facilities and Programs

Relativistic Heavy Ion Collider (RHIC): Supports more than 1000 scientists worldwide

National Synchrotron Light Source II (**NSLS-II**): Newest and brightest synchrotron in the world; supports a multitude of scientific research in academia, industry, and national security

Center for Functional Nanomaterials (**CFN**): Combines theory and experiment to probe materials

Accelerator Test Facility (ATF)

Large Hadron Collider (LHC) ATLAS: Largest Tier-1 center outside of CERN

Atmospheric Radiation Measurement (**ARM**) program: Partner in multi-site facility, operating its external data center

Belle II: Tier 0 computing for neutrino experiment

Quantum chromodynamics (**QCD**) computing facilities for Brookhaven Lab, RIKEN, and U.S. QCD communities

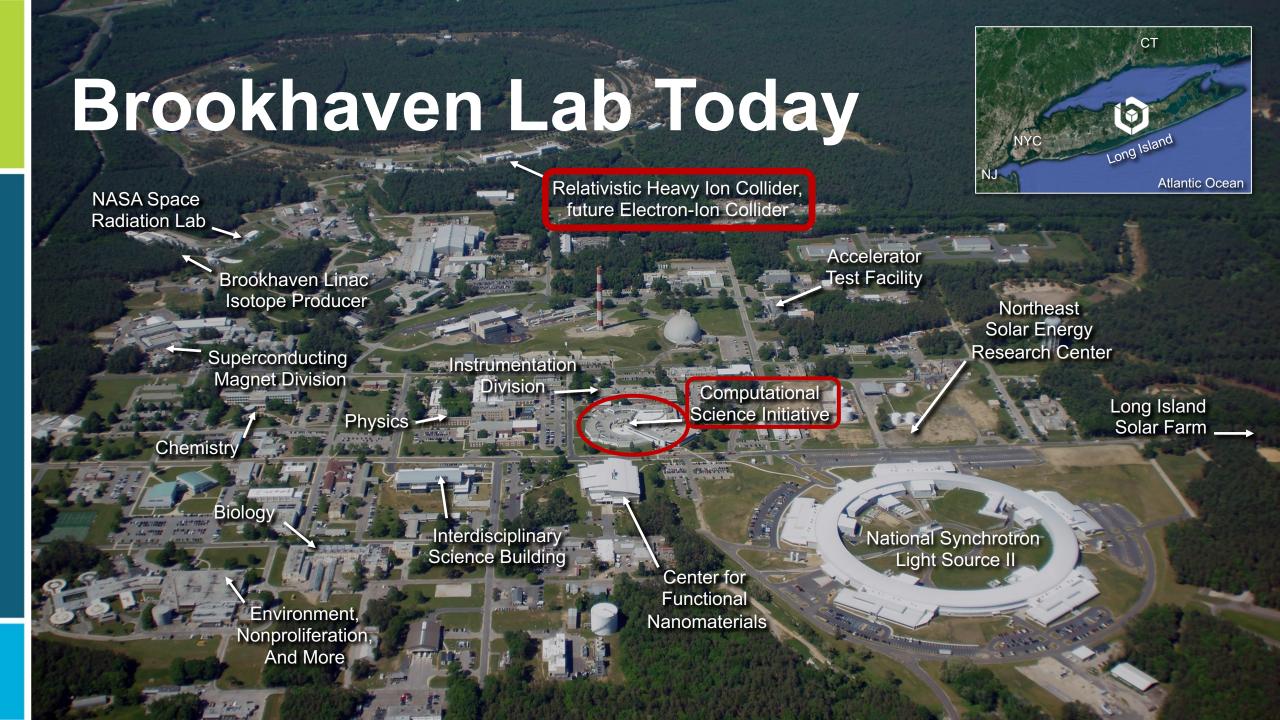
RHIC

CFN

NSLS-II

ATLAS

QCD



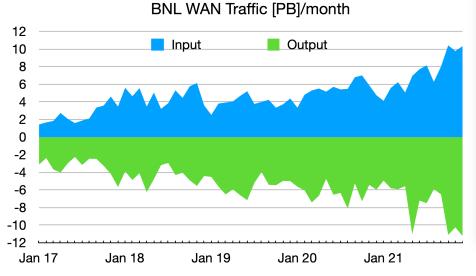
Scientific Data and Computing Center

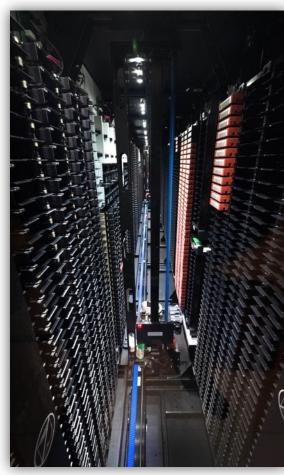
One of the top-10 scientific archives in the world*

- ~215 PB of data archived
- 30 million files injected (26 PB)
- 95 million files restored (196 PB)

2021 Statistics

- 1,750 active accounts
- 1.1 EB of data analyzed
- ~180 PB of data transferred
 - Data import: 85 PB
 - Data export: 95 PB
 - ~30% increase/year





State-of-the-Art Data Center

New Infrastructure: **New 60,000 sq-ft² Data Center** opened in September 2021

Running community services:

 ATLAS Tier 1 Data Center, Belle II Tier 0 Data Center, RHIC, NSLS-II, CFN, LQCD, IBM-Q Hub



We are hiring

- If you are passionate about computing, programming, or ML.
- Inter-disciplinary research environment.
- We are very diverse.

BNL CSI jobs × Q

Sort Criteria Relevancy

6 Results Found for CSI

- <u>Programming Models and Compilers Computer Scientist</u> Upton, NY
- Quantum Computing Scientist Upton, NY
- Postdoc Researcher in Machine Learning Upton, NY
- Postdoctoral Research Associate Machine Learning Upton, NY
- Computer Scientist Upton, NY
- Machine Learning Engineer Upton, NY

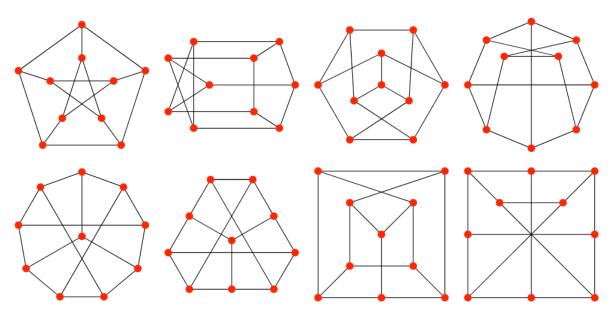
Outline

- Graph and Its Application (10 min)
- Graph Neural Networks (15 min)
- Code Dive (20 min)

"if I cannot implement it, I cannot say I understand it" – someone, Knuth maybe?

Graph

A Graph G is an ordered pair of disjoint sets (V, E) such that E is a subset of $V^{(2)}$ of unordered pairs of V. V is the set of vertices and E is the set of edges. -- "Modern Graph Theory, Bela Bollobas"



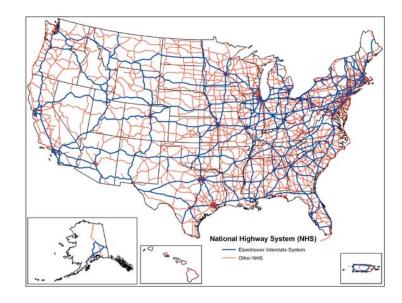
Graph

A Graph G is an ordered pair of disjoint sets (V, E) such that E is a subset of $V^{(2)}$ of unordered pairs of V. V is the set of vertices and E is the set of edges. -- "Modern Graph Theory, Bela Bollobas"

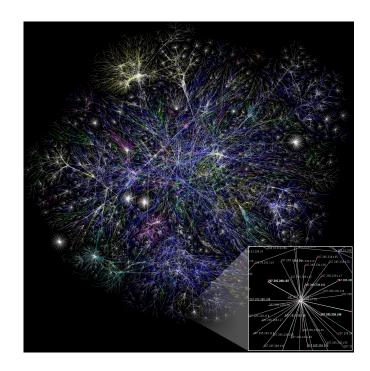
A Graph is just a representation of a connected system. And here are some examples...

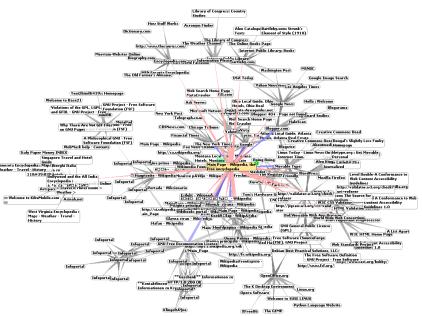
- Transportation Network
 - Roadway:
 - Nodes are intersections
 - Edges are roads
 - Airline:
 - Nodes are airports
 - Edges are routes
 - Global shipping network
 - Subway system

• ...

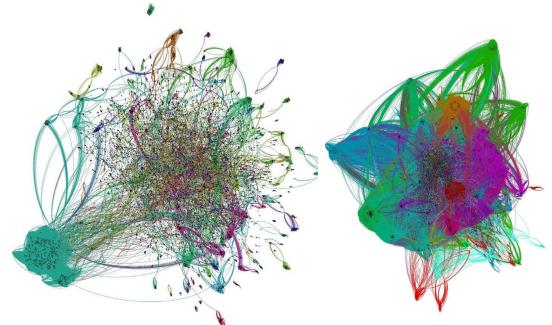


- Transportation Network
- Communication Network
 - Internet (TCP/IP):
 - Nodes are terminals and servers
 - Edges are internet connections
 - World Wide Web (WWW)
 - Nodes are web-pages
 - Edges are hyper-links
 - Cellular network
 - Starlink (♥)
 - •





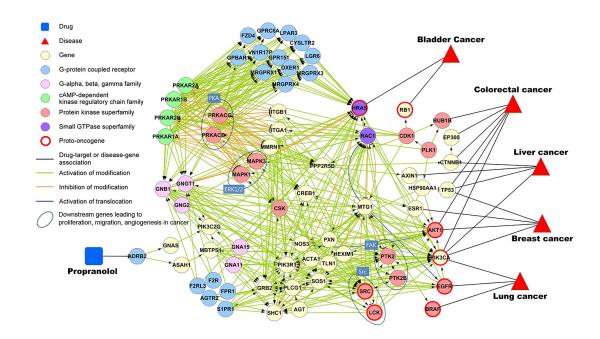
- Transportation Network
- Communication Network
- Social Network
 - Collaboration:
 - Nodes are authors
 - Edges are co-authorship
 - Facebook:
 - Nodes are people (and robots)
 - Edges are friendship (perhaps)
 - Contact Network (covid tracing)

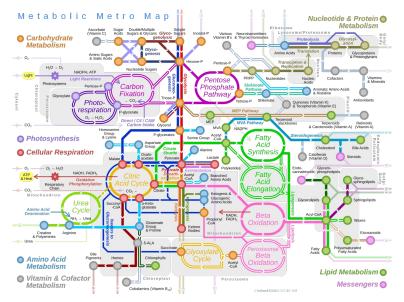


Physicists on ArXiv in 2002 and 2011 Figure credit: https://arxiv.org/abs/1608.03251

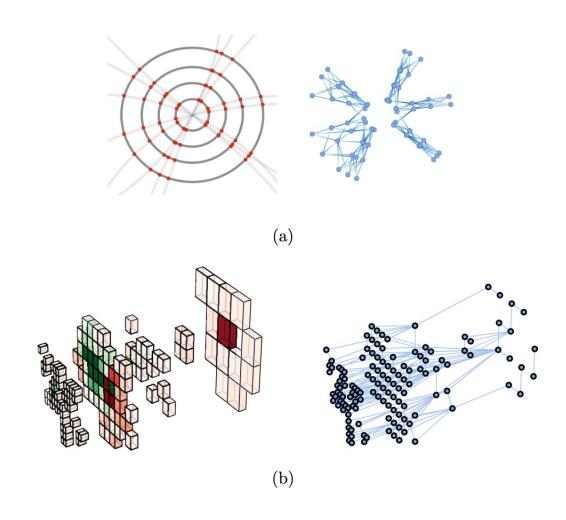
Facebook passed 1bn mark in 2015. Image credit: the Guardian

- Transportation Network
- Communication Network
- Social Network
- Biology Network
 - Gene regulatory network
 - Cellular Pathways
 - Metabolic Pathways
 - Molecules (Drugs)





- Transportation Network
- Communication Network
- Social Network
- Biology Network
- HEP / NP (Physics)

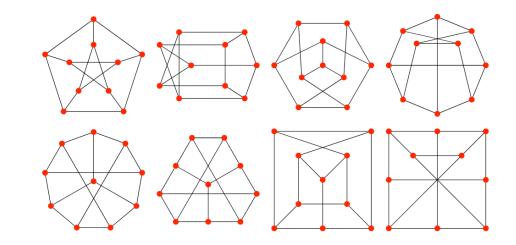


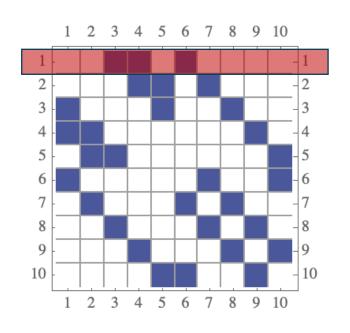
Adjacency Matrix, A.

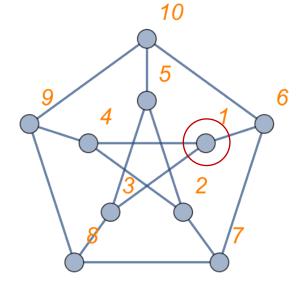
If there is an edge between i and j, $A_{ij} = 1$. otherwise, $A_{ij} = 0$.

Row- *i* marks the neighborhood of node *i*.

Sum of a row is the number of neighbors, aka, "node degree".

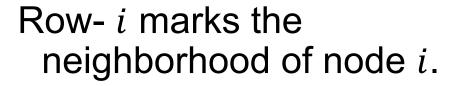




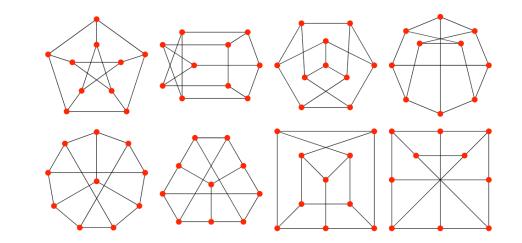


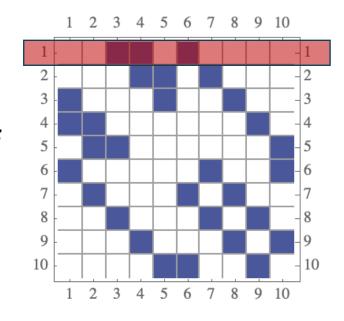
Adjacency Matrix, A.

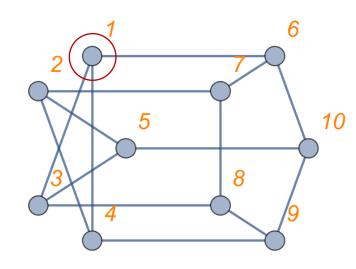
If there is an edge between i and j, $A_{ij} = 1$. otherwise, $A_{ij} = 0$.



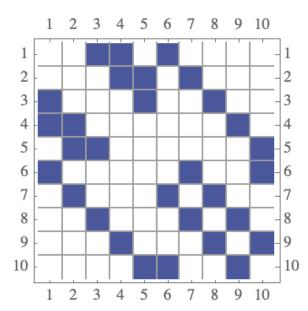
Sum of a row is the number of neighbors, aka, "node degree".

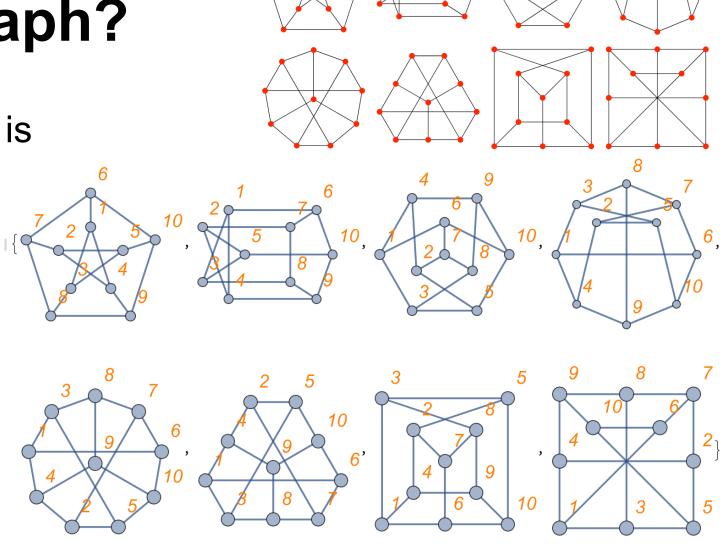






Adjacent matrix does not depend on how a graph is drawn.



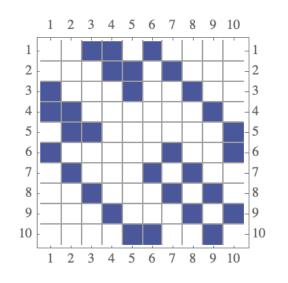


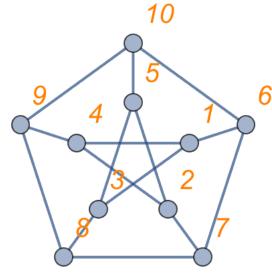
Adjacent matrix does not depend on how a graph is drawn.

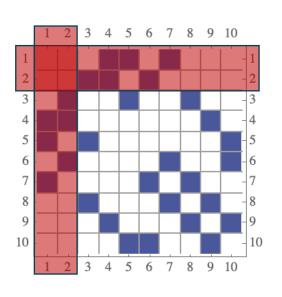
But how a graph is labeled.

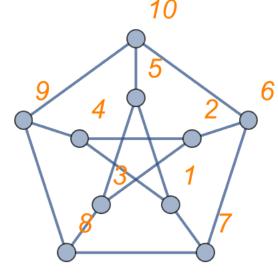
If we swap the labels of node-1 and node-2, the first and second rows and columns are swapped.

However, the graph is still the same. (Isomorphism)







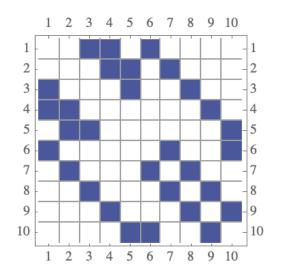


But how a graph is labeled.

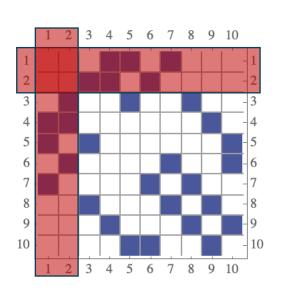
If we swap the labels of node-1 and node-2, the first and second rows and columns are swapped.

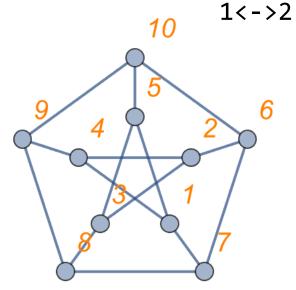
However, the graph is still the same. (Isomorphism)

=> The ML algorithm should be "permutation invariant" or "equivariant".





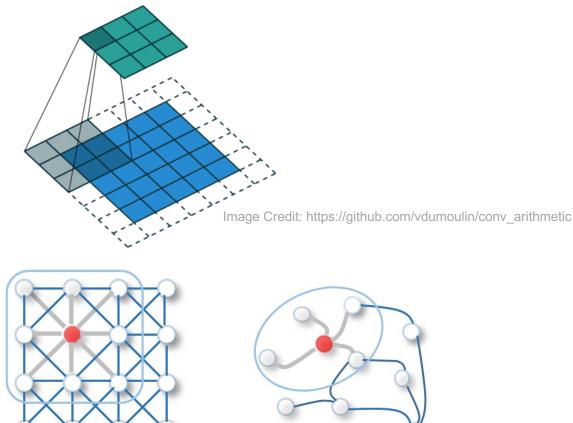




Revisit: Convolutional Neural Network (CNN)

- CNN applies the same "kernels" on different locations of the input. (an image or activations of previous layer.)
- An image can be viewed as a graph, where near by pixels are connected.

=> Graph Convolution?



GCN in a nutshell

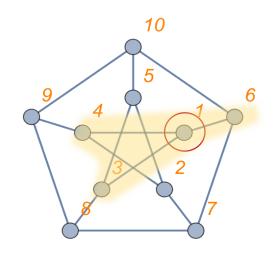
Every node i has a feature vector $h_i^{(l)}$ of size H_l at layer l.

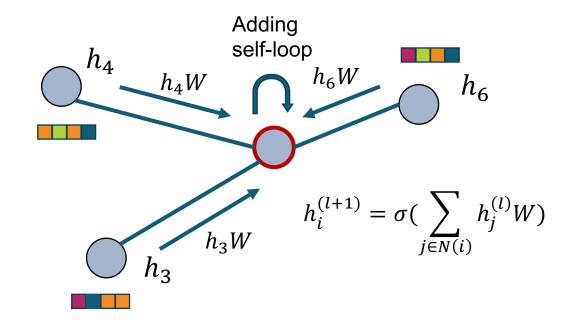
For every node:

- Transform its neighbors' features: $h_j^{(l)}W$
- Aggregate the results and update $h_i^{(l+1)}$ feature.

 $W \in R^{H_l \times H_{(l+1)}}$ trainable weights, shared by all the nodes at layer l.

 $\sigma(\cdot)$ is some non-linear activation function.





GCN in a nutshell

"Neighborhood" can be obtained by Adjacency Matrix. This node-centric formula can be written in the matrix format:

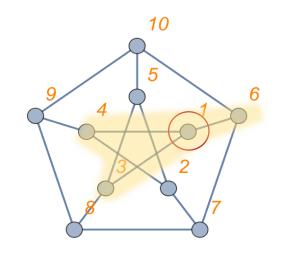
$$H^{(l+1)} = \sigma(\hat{A}H^{(l)}W)$$

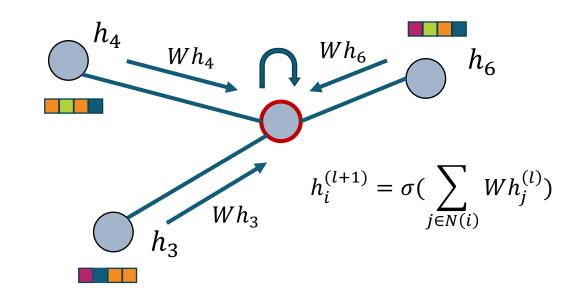
$$W \in R^{H_l \times H_{(l+1)}}$$

$$H^{(l)} \in R^{N \times H_l}$$

$$\hat{A} \in R^{N \times N}$$

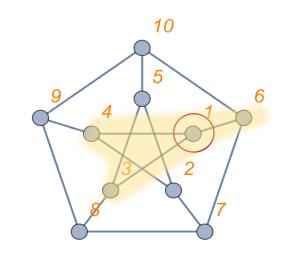
- Added self-loop, A + I.
- Normalized by degree*, $\hat{A} = D^{-1}(A + I)$



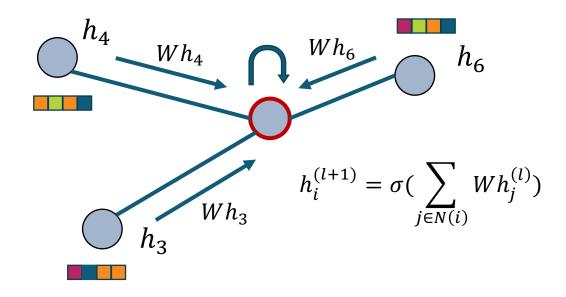


Efficient Implementation

Usually, \hat{A} can be very sparse, we can use sparse matrix multiplication.



How can one create a mini-batch of graphs with different sizes (orders)?



Efficient Implementation

How can one create a mini-batch of graphs with different sizes (orders)?

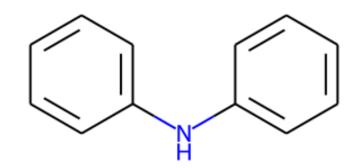
$$\mathcal{G}_1 = (\mathbf{X}_1, \mathbf{A}_1)$$
 $\mathcal{G}_2 = (\mathbf{X}_2, \mathbf{A}_2)$
 $\mathcal{G}_1 = (\mathbf{X}_1, \mathbf{A}_1)$
 $\mathcal{G}_2 = (\mathbf{X}_2, \mathbf{A}_2)$

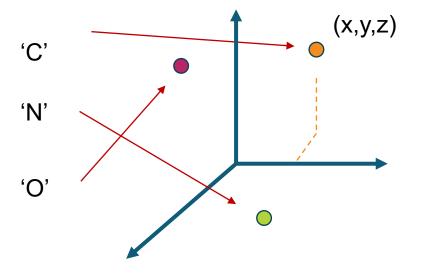
"Graph-batching": concatenate graphs into a single adjacency matrix along the diagonal.

$$\mathbf{A} = egin{bmatrix} \mathbf{A}_1 & & & \ & \ddots & \ & & \mathbf{A}_n \end{bmatrix}, \qquad \mathbf{X} = egin{bmatrix} \mathbf{X}_1 \ dots \ \mathbf{X}_n \end{bmatrix}, \qquad \mathbf{Y} = egin{bmatrix} \mathbf{Y}_1 \ dots \ \mathbf{Y}_n \end{bmatrix}.$$

How to get the node features?

- "Embeddings": map intrinsic features into a vector space.
- torch.nn.Embedding maps categorical features into learnable representation in a vector space.
- For example, different atom types can be mapped to vectors.





GNN Readout Layer

Multi-layer perceptron (MLP) and Graph Pooling Layer.

- node-level classification / regression.
- graph-level classification / regression.

Code Dive

- Problem setting: predict molecule solubility
- Technology: GCN
- Key points:
 - Construct graphs from molecules
 - Create node features
 - Node embedding
 - Graph batching (`collate_fn`)

https://colab.research.google.com/drive/16fF6q1CSnxnEqRSI7LDAb0evscfqMOrf?usp=sharing

Further Reading

- D. Duvenaud's early work on GCN.
- T. Kipf's GCN paper provides a proper degree normalization.
- MPNN generalizes the "message passing" pattern.
- EGNN uses node coordinates and equivariant to rotation, permutation, etc.

Convolutional Networks on Graphs for Learning Molecular Fingerprints

arXiv:1509.09292

David Duvenaud[†], Dougal Maclaurin[†], Jorge Aguilera-Iparraguirre Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams Harvard University

SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

arXiv:1609.02907

Thomas N. Kipf University of Amsterdam T.N.Kipf@uva.nl Max Welling
University of Amsterdam
Canadian Institute for Advanced Research (CIFAR)
M.Welling@uva.nl

Neural Message Passing for Quantum Chemistry

arXiv:1704.01212

Justin Gilmer ¹ Samuel S. Schoenholz ¹ Patrick F. Riley ² Oriol Vinyals ³ George E. Dahl ¹

E(n) Equivariant Graph Neural Networks

arXiv:2102.09844

Victor Garcia Satorras ¹ Emiel Hoogeboom ¹ Max Welling ¹

