Connections Experiment-Theory

Pia Zurita (University of Regensburg) and Markus Diefenthaler (Jefferson Lab)

How to fully take advantage of Al/ML in physics studies for the EIC?

For the EIC community: A rigorous benchmarking process

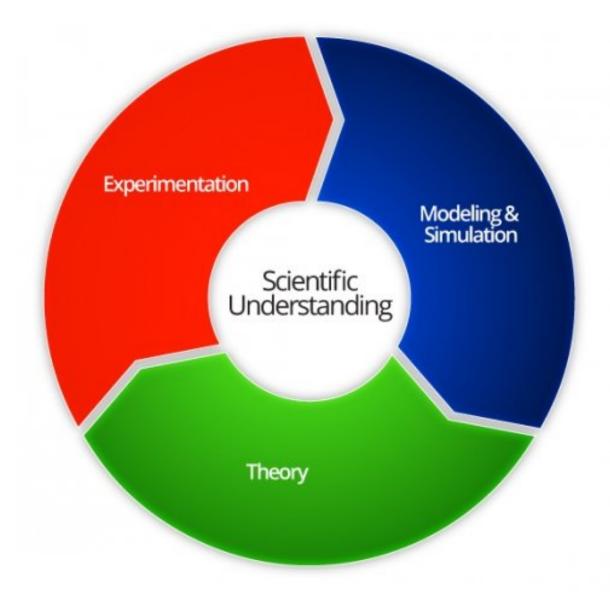
EIC analyses should be based on rigorous benchmarking that allows for quantitative comparison of different approaches.

In our DVES example:

From by Simonetta Liuti (UVa)

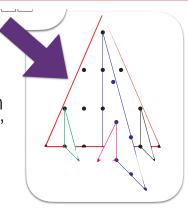
- Physics Benchmarks
 - number and type of CFFs
 - Q² dependence of the cross section and observables: kinematic terms, PQCD evolution (LO, NLO, NNLO), and dynamical beyond LO terms (higher twists)
- ➤ Machine Learning Benchmarks
- ML architectures hyperparameters (number of layers, size of hidden nodes, activation functions, drop-out rates, loss functions, gradient descent methods)
- Features specific to data-centric analysis (feature selection and transformation, data augmentation, data synthetics, and data cleansing)
- Uncertainty Quantification
 - Inherent statistical fluctuations in physics (statistic)
 - Errors inherent from measurement system (systematic)
 - Errors in ML models
 - Errors in the training procedure

Monte Carlo Event Generators

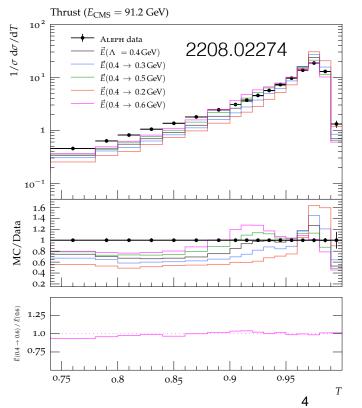


Ben Nachman (LBNL) – Towards a differential parton shower

Full parton shower is a bit tricky since variable (unbounded) number of random numbers. Let's start with "Discrete QCD" where the number is fixed.



Images from 2207.10694; algorithm from Nuclear Physics B 463 (1996) 217



As a first test, we show how this can be used to extract the strong coupling constant.

All of these samples have the same random numbers!

Tony Menzo (Cincinnati) – Modeling Hadronization using ML

Pythia / Lund String Model

Model + machine learning methods CAN be used to implement hadronization.

What's next:

- ML-improved (data-improved) model of hadronization
- ML flavor selector
- Error estimation
- Much more 🙂



Hadron multiplicty vs string energy cSWAE

Check out our code!

https://gitlab.com/uchep/mlhad

Check out our paper!
(Recently accepted for publication in SciPost Physics)

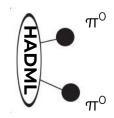
arXiV: 2203.04983

Andrzej Siódmok (Jagiellonian) – Modeling Hadronization Using ML and the

Summary

Cluster Model

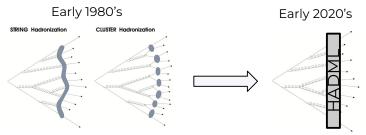
- We presented first step on the path towards a neural network-based hadronization model
- We emulated cluster hadronization model from Herwig with a GAN (HADML)
- HADML is designed to reproduce the two-body decay of clusters into pions
- The kinematic properties of other hadrons are emulated using the pion model and conservation of energy.



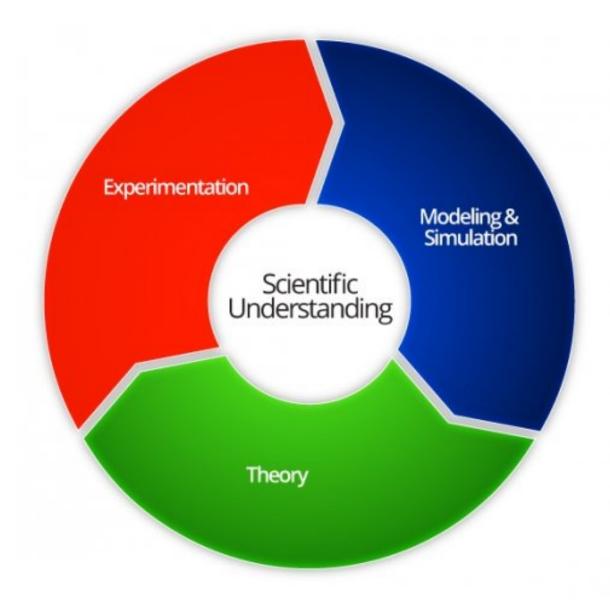
- HADML is able to reproduce Herwig's light cluster decays
- Integrated with the full Herwig simulation is able to reproduce results from LEP data

Outlook

- The ultimate goal of is to train the ML model directly on data to improve hadronization models
- Number of technical and methodological step needed:
 - → Directly accommodate multiple hadron species with their relative probabilities
 - → Heavy cluster decays
 - → Hyperparameter optimization, including the investigation of alternative generative models
 - → Methodological innovation is required to explore how to tune the model to data



Experimental-Theoretical Workflows



Astrid Hiller-Blin (Tübingen & Regensburg) – A(I)DAPT

A(I)DAPT := AI for Data Analysis and PreservaTion

We created GAN event generators for:

DIS — closure test of an unfolding architecture for the first time;

CLAS data — captured intricate detector acceptance behavior and multi-particle correlations.

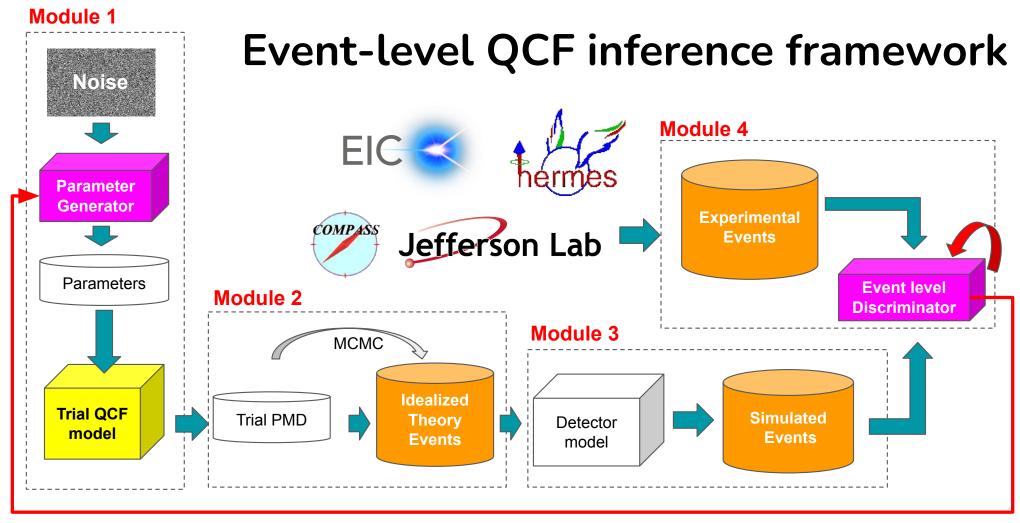
We are currently analysing:

- unfolding of CLAS data to extract physics at vertex level;
- information from hidden layers;
- uncertainty quantification metrics and physics validation.

In future, these benchmarks will allow for

- powerful minimum-bias interpolation tools;
- physics extraction and amplitude analysis from synthetic vertex-level data.

Nobuo Sato (JLab) – Femtoscale Imaging of Nuclei using ML and Exascale



Optimize QCF parameters

Summary

D. Geesaman (NSAC) "It will be joint progress of theory and experiment that moves us forward, not in one side alone"

- We have ideas for new workflows on how to connect experiment and theory better.
- We have ML approaches for how to accelerate and improve simulations.

Ben Nachman (LBNL) on Differentiable Simulations

- Thinking of our simulations as differentiable is a new and powerful paradigm.
- We can do optimal inference and run our codes on accelerators "for free".

Bottleneck, as usual: Lack of open data from experiments

