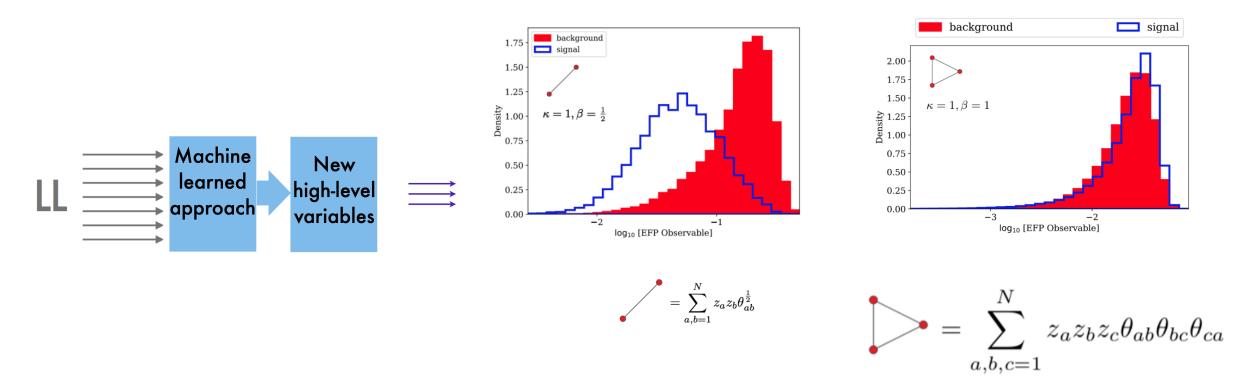
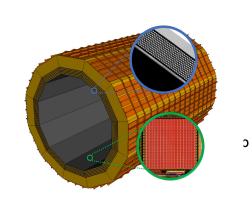
Reconstruction & PID Track

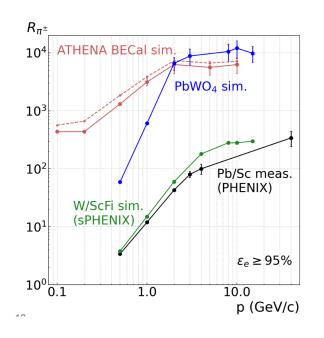
Sadhana Dash, Rachel Montgomery, Anselm Vossen

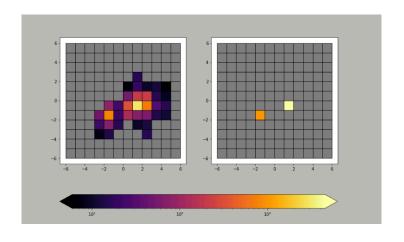

We had a dense schedule...

- Lots of activity, not possible to cover all in one session
- Focused on exemplary work and work specific to the EIC→8 contributions
- Reconstruction/PID of calorimeter response
 - Daniel Whiteson → DNN assisted high-level feature finding
 - Will Phelps→MuonID at ECCE
 - Chao Peng → AI/ML using input from imaging Athena ECAL
 - Nathan Branson→Extracting features from pixelated calorimeters for cluster separation
- Jet Classification
 - Raghav K. Elayavalli → Using Vector of Locally Aggregated Descriptors (VLAD) to tag Heavy Flavor Jets
- Tracking
 - Corentin Allaire → ML in ACTS
- Data driven approaches and domain adaption
 - James Giroux → data driven one-class classification
 - Matthew McEneaney →GNNs with adversarial networks to overcome differences in training (simulation) and data

Interpretable Networks for Identifying Leptons	Daniel Whiteson
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	10:00 - 10:25
QIA	
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	10:25 - 10:30
Tagging heavy flavor jets @ RHIC	Raghav Kunnawalkam Elayavalli
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	10:30 - 10:55
QIA	
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	10:55 - 11:00
Muon Identification with Deep Learning at EIC	William Phelps
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	11:00 - 11:15
QIA	
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	11:15 - 11:18
Coffee break	
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	11:18 - 11:28
Machine Learning in ACTS	Corentin Allaire
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	11:28 - 11:45
QIA	
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	11:45 - 11:48
ML particle identification with measured shower profiles from calorimetry	Chao Peng
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	11:48 - 12:03
Q/A	
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	12:03 - 12:06
Lambda event tagging at CLAS12	Matthew McEneaney
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	12:06 - 12:21
Q/A	
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	12:21 - 12:24
ML for calorimetry	Nathan Branson
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	12:24 - 12:39
Q/A	
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	12:39 - 12:42
Data-driven learning: Flux+Mutability	James Giroux
room 1019, William & Mary, Raymond A. Mason School of Business, Alan B. Miller Hall	12:42 - 12:57

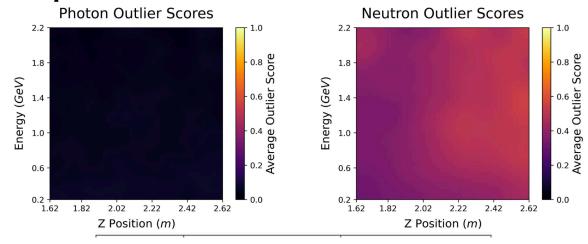

Daniel Whiteson: Interpretable Networks for identifying Leptons

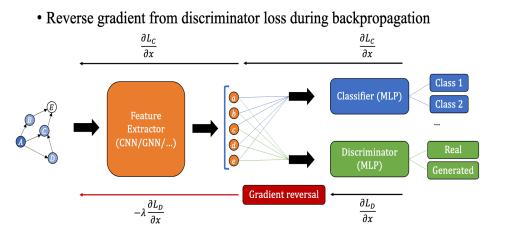

 Energy Flow Polynomials form base for interpretable high level features that can be found using a DNN (compare performance)

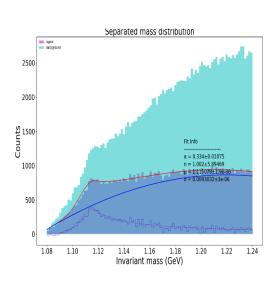


ML with Imaging/Pixelated ECALs

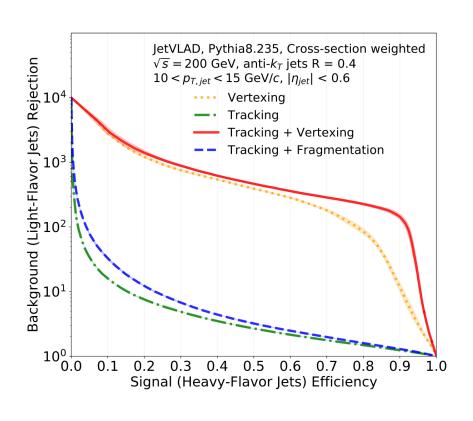
- Chao Peng: ML particle identification with measured shower profiles from calorimetry
- Use Imaging Calorimeter+ML leads to competitive performance to $PbWO_4$ with E/p
- CNN+MLP
- Nathan Branson: ML for Calorimetry
- Cluster Separation in pixelated Calorimeter
- Autoencoder to reduce to features that allow cluster separation
- Transferable to FPGA

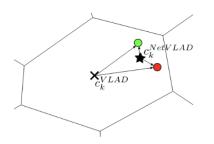


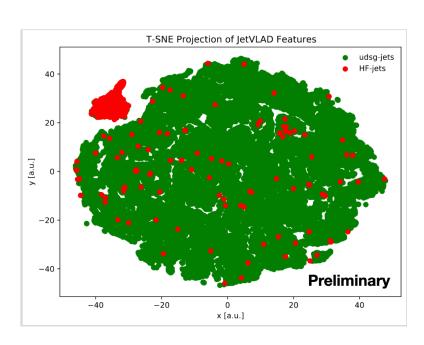



Addressing Simulation Challenges: Data driven and domain adaption approaches

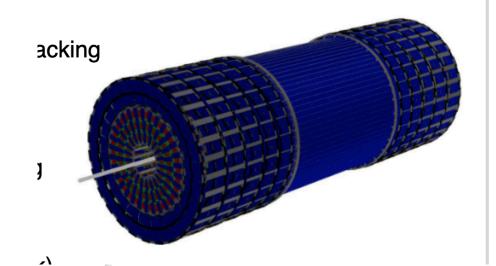
- James: Giroux Data-driven learning: Flux+Mutability
- Augmented features with residuals from autoencoder output
- Compare to reference population generated via autoregressive flow
- One-class classification (can be data driven) → no need to know BGs.
- Matthew McEneaney: Lambda Tagging at CLAS12
- Domain Adversarial Networks only use features that are the same in Data and Simulation


y/n Separation at GlueX - Results





Raghav Kunnawalkam Elayavalli: Tagging heavy flavor jets @ RHIC



 Using Vector of Locally Aggregated Descriptors (VLAD provides very competitive performance in HF tagging

Corentin Allaire: Machine Learning in ACTS

Open Data Detector:

- Summary Slide
- ACTS is an Open Source tracking toolkit
- Provides virtual ODD detector to test different algorithm
- Great environment to develop new Machine learning based solution for track reconstruction :
 - Hashing for track reconstruction
 - Parameter auto-tuning for tracking algorithm (available in Acts)
 - GNN for track finding (also available)

