"Flux + Mutability":

A Conditional Generative Approach to One-Class Classification and Anomaly Detection

James Giroux (URegina)

Dr. Cristiano Fanelli (W&M, JLab)

Dr. Zisis Papandreou (URegina)

October 12, 2022

Outline

- One-Class Classification (OCC) and Anomaly Detection (AD)
- "Flux + Mutability" (F+M) A Conditional Generative Approach
- y/n separation at GlueX OCC
- Standard Model(SM)/Beyond (BSM) Dijet Separation at LHC AD
- Summary

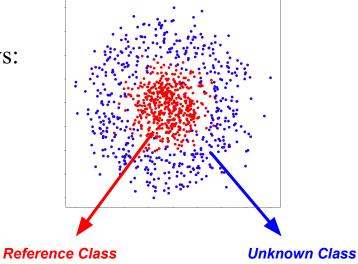
C. Fanelli, J. Giroux, Z. Papandreou, "Flux+Mutability": A Conditional Generative Approach to One-Class Classification and Anomaly Detection (2022). https://arxiv.org/abs/2204.08609

Accepted to IOP Machine Learning Science and Technology

OCC and AD

t-SNE representation of N dimensional objects

Suppose we have two classes distributed as follows:

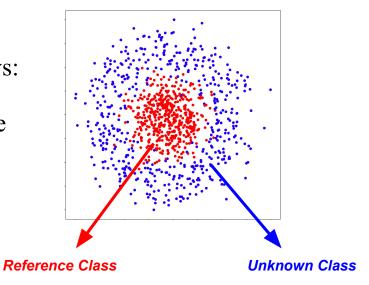


OCC and AD

t-SNE representation of N dimensional objects

Suppose we have two classes distributed as follows:

1. Can we use deep learning to separate the two more efficiently than standard rectangular cuts?

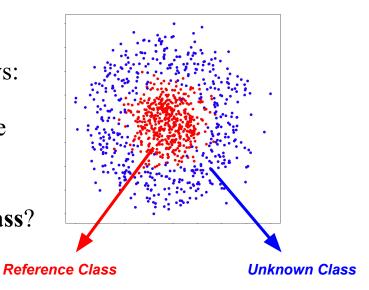


OCC and AD

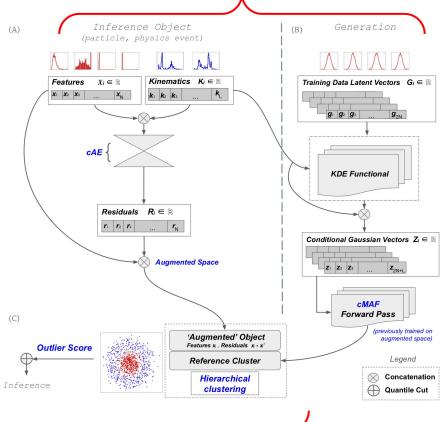
t-SNE representation of N dimensional objects

Suppose we have two classes distributed as follows:

- 1. Can we use deep learning to separate the two more efficiently than standard rectangular cuts?
- 2. Can we remain agnostic towards the **unknown class**?
 - Agnostic threshold selection



"Flux

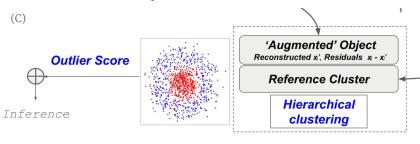


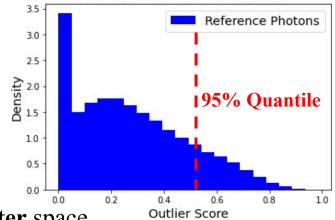
- (A) Inference Object fed through cAE
 - Features \bigotimes Kinematics
 - Features \bigotimes Residuals $(\mathbf{x'} \mathbf{x})$
- (B) Continuous Conditional Generation
 - Pre-fit KDE Objects in kinematic bins
 - Map inference kinematics to KDE object
 - Sample new Gaussian vectors from restricted domain
 - Gaussian Vectors

 Inference Kinematics
 - Conditionally generate reference population via cMAF
- (C) Compare inference object to **reference population** via Hierarchical clustering and quantile cuts

Unsupervised OCC and AD

HDBScan and Quantile Cuts

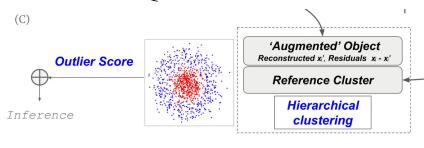


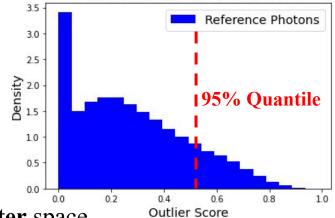


- Augment the inference particle into the reference cluster space
 - Two notions of *membership* density based, distance based
- Combine the two PMF's and extract a probability of membership (P_{in})
- Define Outlier Score as complementary probability $P_{out} = 1 P_{in}$
- Extract **reference population** outlier score corresponding to a desired quantile

Unsupervised OCC and AD

HDBScan and Quantile Cuts



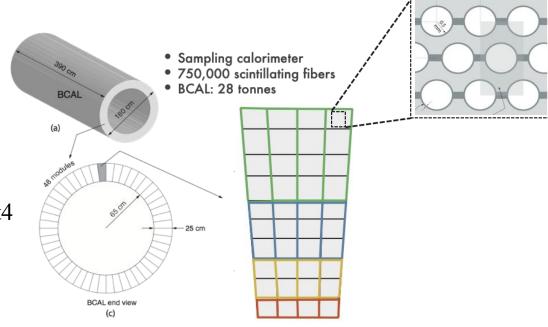


- Augment the inference particle into the reference cluster space
 - Two notions of *membership* density based, distance based
- Combine the two PMF's and extract a probability of membership (P_{in})
- Define Outlier Score as complementary probability $P_{out} = 1 P_{in}$
- Extract reference population outlier score corresponding to a desired quantile

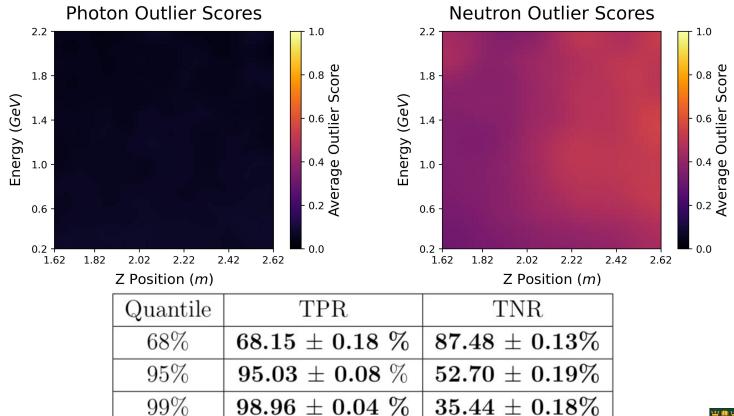
We have defined a dynamic threshold as function of the kinematics, completely agnostic towards the unknown class.

y/n Separation at GlueX - OCC

- High confidence on one class
- Isolate highly active phase space within BCAL
- Reconstructed energy (E) and z
 position (z) as kinematic conditions
- Simulated photon (reference) and neutron (unknown) showers - Geant4
- Strict preselection cuts
- Deploy fiducial cuts to extract only neutron showers which highly resemble photons
- 14 input features comprising of detector response variables



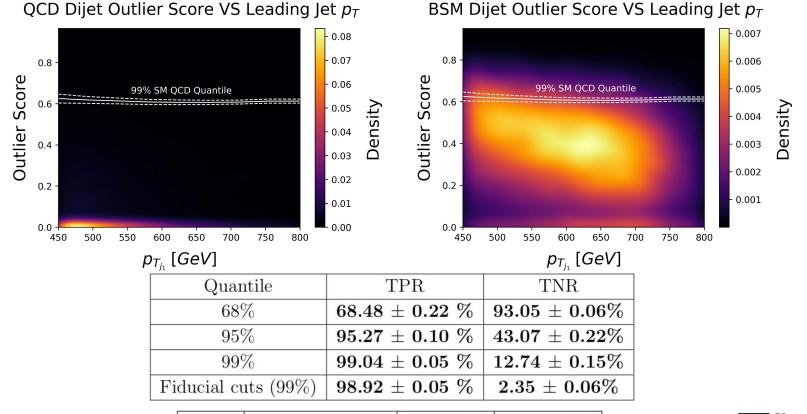
y/n Separation at GlueX - Results



BSM/SM Dijet Separation at LHC - AD

- Consider QCD dijet events as **reference**
- Isolate $Z' \to t\bar{t}$ dijets as **unknown**
- Publicly available <u>datasets</u> generated via *MADGRAPH* and *Pythia8* using the *DELPHES* framework for fast detector simulation
- Require leading jet transverse momenta 450 GeV $< p_T < 800$ GeV and sub-leading jet $p_T > 200$ GeV
- Consider leading jet p_T as single kinematic condition
- 15 input features
 - Remaining 4 vector properties of the leading jet and n-subjettiness variables
 - Sub-leading jet 4 vector and n-subjettiness variables

BSM/SM Dijet Separation at LHC - Results



Fraser et al. Cheng et al.

0.89

0.87

Ours

 0.891 ± 0.005

AUC

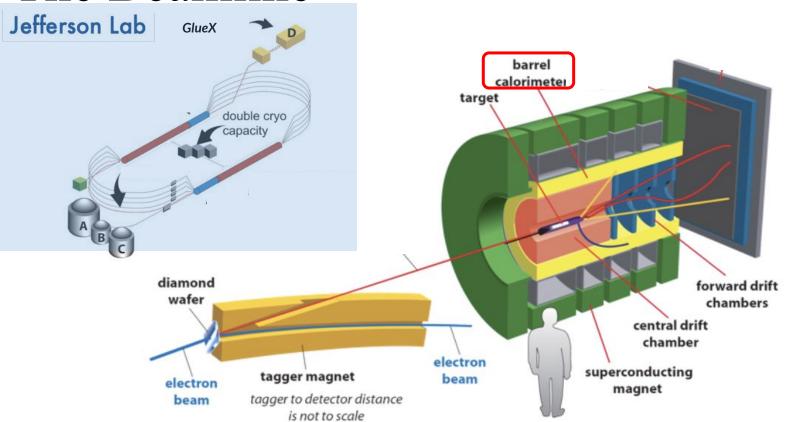
Summary

- Our architecture removes the need for semi-supervised approaches
 - Agnostic threshold selection
 - Totally unsupervised
- Highly dependable return rate (TPR = Quantile)
- Flexible deployable on various problems
- Lends itself naturally to the role of data monitoring within detectors

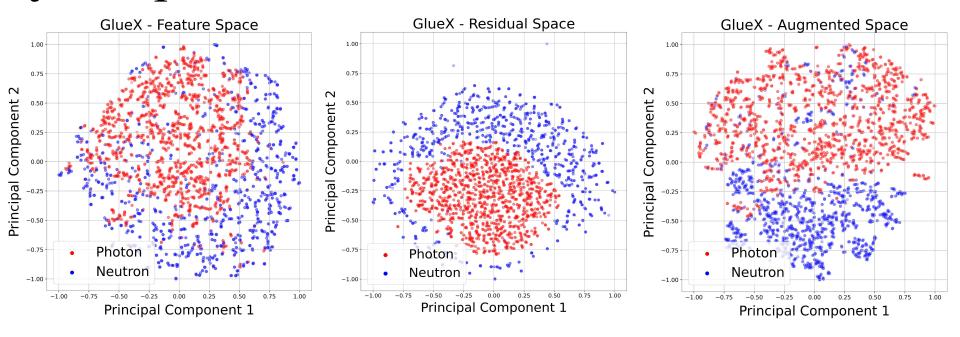
Thank you!

Backup Slides

The Beamline

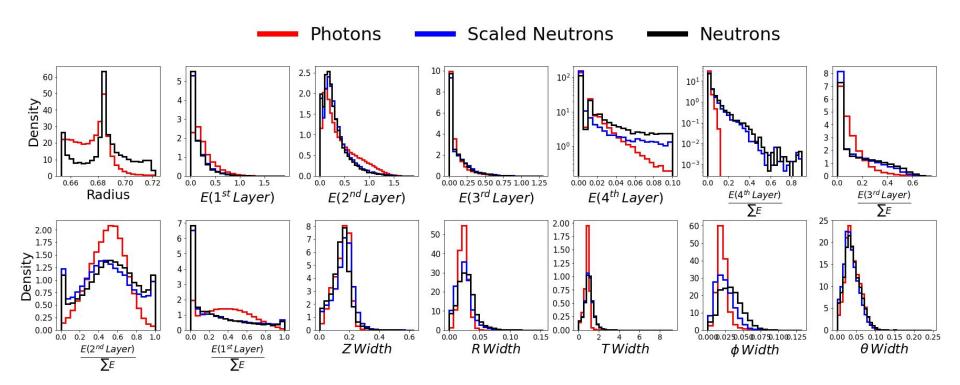


y/n Separation at GlueX - Residuals

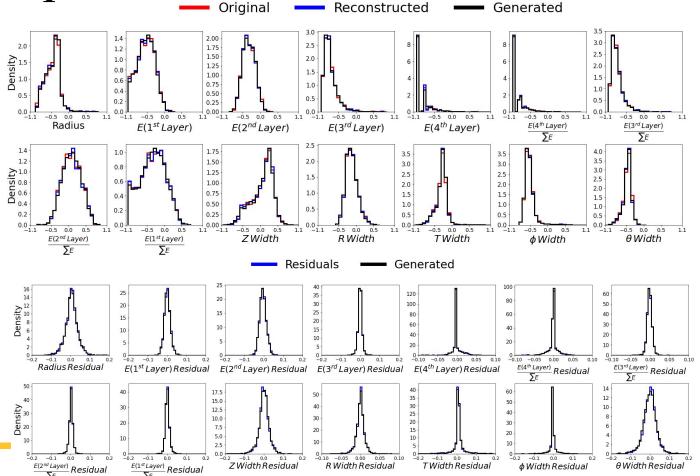


Features localize the space, residuals push nested clusters radially outward.

y/n Separation at GlueX - Features

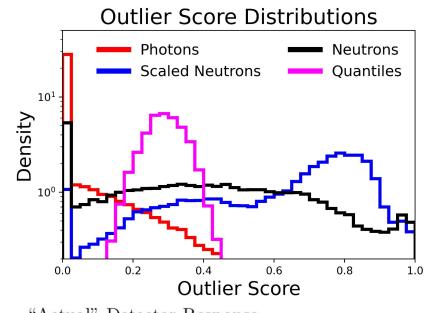


y/n Separation at GlueX - Generations



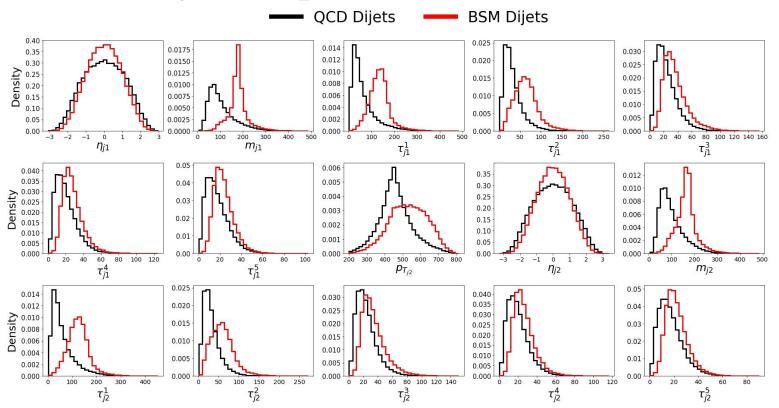
Benefits of Conditional Learning

- Perturb neutrons such that they are almost indistinguishable from photons
 - Considered "Actual" detector response
- F+M trained on only photons
- XGBoost trained on unperturbed neutron sample along with photons
- XGBoost given access to E and z as features
- Neutron kinematic correlations picked up via F+M residuals - average outlier score increased



	Simulation		"Actual" Detector Response	
Algorithm	TPR	TNR	TPR	TNR
XGBoost	$92.15 \pm 0.10\%$	$91.93 \pm 0.10\%$	$92.15 \pm 0.10\%$	$78.82 \pm 0.15\%$
F + M (Augmented)	$92.01 \pm 0.18\%$	$60.34 \pm 0.10\%$	$92.45 \pm 0.10\%$	$82.86 \pm 0.14\%$
F + M (Features)	$92.44 \pm 0.10\%$	$56.24 \pm 0.19\%$	$92.45 \pm 0.10\%$	$49.31 \pm 0.19\%$

BSM/SM Dijet Separation at LHC - Features



BSM/SM Dijet Separation at LHC - Generations

