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Introduction

I We attempt to reduce Data vs Simulation discrepancies in the High Energy
Physics (HEP) with a help of unpaired image-to-image translation methods.

I Plan of the Talk:
I Motivate the Problem
I Discuss our Experiment and Dataset
I Discuss our Method
I Highlight some challenges that we faced
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Motivation – No Labeled Data

I In High Energy Physics (HEP)
experiments we study elementary
particles as they pass through the
detector.

I To refine our understanding of the
laws of nature, we try to identify
particles in the detector and
estimate their energies.

I However, humans can perform such
an identification only in a few
special cases.

I Problem - where to get labels from
in the general case? NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

Credits MicroBooNE Collaboration
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Labeled Data. Standard Solution

I Since humans cannot perform data labeling, physicist are relying Machine
Learning algorithms to perform the particle identification/energy estimation.

I However, the problem still remains – to train the ML algorithms one needs the
labeled data.

I Solution – use Simulation:
1. Perform simulation of particle interactions with the detector.
2. Train ML algorithms on the simulation.
3. Use ML algorithms on the real data.
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Reality-Simulation Discrepancies

I The usage of simulation solves the problem of getting the labeled data.

I Unfortunately, there are multiple discrepancies present between the simulated
and the real data.

I These discrepancies raise serious concerns, regarding the validity of the usage of
the ML algorithms on the real data, given that they are trained on the simulation.
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Reality-Simulation Discrepancies, Solutions?

I Physicists spent a considerable amount of time trying to manually identify all
possible discrepancies between the simulation and the real data.

I Yet, new discrepancies are still found continuously. They significantly limit the
applicability of the ML methods in the HEP community and cause significant
delays in data analysis.

I We are trying to leverage the power of Deep Learning to automatically
identify possible discrepancies between the simulation and the real data,
and fix them.
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Bridging the Simulation-Reality Gap with Deep Learning

I We formulate the problem of reducing the simulation-reality discrepancies as the
domain translation problem:

1. Domain A – Simulated Data.
2. Domain B – Real Data.

I Given an image XA from the Simulation Domain we would like to translate it to
the Domain of Real Data with a help of a Deep Network GA→B , such that the
translated image GA→B(XA) is indistinguishable from the Real Data.

I Such a problem is known in the Deep Learning community as an
Image-to-Image translation problem and has multiple solutions.

I In particular, since there is no simple way to pair Simulated to Real images, our
problem maps to the Unpaired Image-to-Image translation problem in the
Deep Learning field.
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Milestone
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I Discuss our Method
I Highlight some challenges that we faced
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Dataset

I Before attempting to solve the domain translation problem we need to agree on
the dataset to use.

I As a starting point, we decided to consider Liquid Argon Time Projection
Chamber (LArTPC) based experiments.

I The LArTPCs are the next generation particle detectors:
I The LArTPC detector is simply a container filled with liquid Argon.

I When charged particles travel though the liquid Argon they create trails of electrons.

I These trails can be used to detect particles.
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Liquid Argon Detector, 1

I Charged particles leave clouds of electrons in
the detector.

I The clouds of electrons slowly drift towards
the wire-planes under the influence of the
strong electric field Edrift.

I Metallic wires record electric excitations
caused by the bypassing electrons.
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Liquid Argon Detector, 2
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Liquid Argon Detector, 3
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Liquid Argon Detector, 4
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Liquid Argon Detector, 5
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Liquid Argon Detector, 6
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Liquid Argon Detector, 7
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Liquid Argon Detector, 8
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Liquid Argon Detector, 9
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Liquid Argon Detector, 10
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Liquid Argon Detector, 11
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Liquid Argon Detector, 12

(a) Schematic Waveforms (b) Actual Data Sample
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Benchmark Data

I Before tackling the Simulation to Real Data translation we focused on a simpler
problem of translating Simulation A into Simulation B.

I Both simulated datasets use the same simulation of particle propagation through
the detector.

I The only difference between the two simulated datasets is the way the wires
respond to the clouds of electrons:

1. Domain A – simplified detector response, where a cloud of electrons is read only by
the nearest wire.

2. Domain B – realistic detector response, where a cloud of electrons can produce
excitations in multiple wires.
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Sample of Generated Images

(a) Domain A (b) Domain B
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Unpaired Image-to-Image Translation

I Once the benchmark dataset has been chosen we can start exploring image
translation methods.

I The most common image-to-image translation methods rely on Generative
Adversarial Networks.

I Of the possible GAN image-to-image translation variants there is one model that
has drawn our attention due to its inherent properties – the CycleGAN model 1.

1arXiv:1703.10593

https://arxiv.org/abs/1703.10593
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CycleGAN Basics

Domain A Domain B

At the core of CycleGAN lies a traditional GAN architecture with a generator GA→B
that translated images from domain A to B.
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CycleGAN Basics

Domain A Domain B

To train the generator GA→B , GAN uses an adversarial min-max game against a
discriminator DB
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Traditional GAN training is prone to Mode Collapse

(a) Domain A (b) Translated to Domain B
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CycleGAN Architecture

Domain A Domain B

CycleGAN uses two generators GA→B , GB→A and two discriminators DA DB .
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CycleGAN Cycle Constraint

Domain A Domain B

To solve the Mode Collapse problem, CycleGAN enforces a cycle-consistency
constraint: GB→A(GA→B(XA)) == XA, and symmetrically in for XB .
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CycleGAN Solution of the Mode Collapse Problem

I CycleGAN is one of the earliest successful Unpaired Image-to-Image transfer
architectures. It solves the mode collapse problem by imposing the
cycle-consisntency constraint.

I Better models exist in terms of the image translation quality. However, these
models relax the cycle-consistency constraint, allowing generator to gain and
loose information during the translation.

I We believe that maintaining the cycle-consistency is important goal, since we do
not want the physics to be altered going from domain A to B and back.

I So, we have attempted to use the default CycleGAN architecture on our
benchmarking dataset.
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Initial CycleGAN Usage Attempt

A A -> B B

A A -> B B

A A -> B B

B B -> A A

B B -> A A

B B -> A A
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Initial CycleGAN Usage Attempt – Chunky Tracks

A A -> B B

A A -> B B

The default CycleGAN experiences difficulties with a translation of wide tracks
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CycleGAN Translation Issues

I The default CycleGAN gives good translation on average, yet produces noticeable
artifacts for some cases.

I Analysing the artifacts, we believe that they are the result of the generator
architectures of the CycleGAN (UNet or ResNet).

I The CycleGAN generators rely on CNN layers, which are very local in nature. So,
perhaps the network simply translated image patches locally, and they are globally
mismatched.

I We tried to augment the CNN generator to add a global matching step.



36/45

UNet-ViT Generator

We augmented UNet by a Vision Transformer bottleneck to handle long-range
dependencies.
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UNet-ViT Fixing Bad Translations

A A -> B B

A A -> B B

Figure: Default CycleGAN Generator

A A -> B B

A A -> B B

Figure: New UNet-ViT Generator
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Improving CycleGAN Performance

I By modifying the generator architecture we were able to improve the translation
quality of CycleGAN.

I However, the vanilla CycleGAN is still outperformed by the more advanced models
that relax the cycle-consistency constraint.

I We have tried to further improve the CycleGAN performance to match the one of
the more advanced algorithms.
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CycleGAN Modifications, 1

I To further improve the CycleGAN performance we have tried to pre-train its
generators.

I To pre-train the generators we focused on a task of a self-supervised image
inpainting.
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Pre-Training Generators by Image Inpainting

Real Masked Reconstructed

For the image inpainting task, some parts of the image are masked. The network is
tasked with recovering the masked parts of the image from their surroundings
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CycleGAN Modifications, 2

I Unfortunately, the pretraining alone did not seem to improve the image
translation quality.

I So, we have implemented a discriminator regularization by penalizing the
magnitude of its gradients.

I Together, the self-supervised pre-training and gradient penalty allowed the
CycleGAN to achieve the performance of more advanced algorithms.
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Modified CycleGAN Benchmarking

I We have compared our modified CycleGAN
(called UVCGAN) vs more advanced models:

1. ACL-GAN arXiv:2003.04858
2. Council-GAN arXiv:1911.10538
3. U-GAT-IT arXiv:1907.10830

I We performed the comparison on the
standard Image-to-Image benchmark datasets
(Selfie-to-Anime, Male-to-Female, Glasses
Removal).

I Our UVCGAN outperforms more advanced
models on 4 out of 6 benchmarks and
achieves competitive results on the other two.

https://arxiv.org/abs/2003.04858
https://arxiv.org/abs/1911.10538
https://arxiv.org/abs/1907.10830
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UVCGAN Intermediate Results

I By modifying the generator architecture and improving the training procedure, we
were able to make the CycleGAN performance competitive with more advanced
models.

I We have also obtained reasonably good translation quality on our benchmarking
LArTCP dataset.

I Generic Image-to-Image translation results are published in arXiv:2203.025572,
and LArTCP results are in preparation.

2Code can be found here https://github.com/LS4GAN/uvcgan

https://github.com/LS4GAN/uvcgan
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UVCGAN Next Steps

I Now our work focused on three directions:
1. Simulate a more advanced LArTPC dataset.
2. Extend UVCGAN to work on much larger images (6000 × 1000).
3. Explore other improvements to the UVCGAN training.



45/45

Our Team
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Backups
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Natural Image Translation Quality, FID and KID

I For natural images, well-established metrics are avaialble to assess the quality of
translation: FID and KID.

I These metrics compare translated images XA→B ≡ GA→B(XA) to the real images
in the Domain B XB .

I Evaluation of all metrics begins by applying Inception Net classifier, trained on the
ImageNet dataset over all images {XA→B} and {XB}.

I For each image, a number of features is extracted from a selected set of deep
layers of the Inception Net.

I FID and KID scores compare the resulting sets of features between the
distribution of translated and real images.
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UVCGAN Cycle-Constraint Effects

Unlike other models, UVCGAN maintains strong correlation between input and output
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