Opportunities for AI/ML in Streaming Readout

Introduction to Streaming Readout

Streaming Readout and AlI/ML for rapid
turnaround of data and starting the work

on publications
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Towards the next-generation research model in Nuclear Physics

EICUG AIWG Meeting, August 24, 2022.

Science & Industry remarkable advances in electronics,
computing, and software over last decade

Evolve & develop Nuclear Physics research model based
on these advances

Roles of computing Data processing from data acquisition
(DAQ) to analysis largely shaped by kinds of computing that
has been available

Example Trigger-based readout systems

Advances in electronics, computing, and software Unique
opportunity to think about new possibilities and paradigms
Example Streaming readout systems
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CODA: Trigger-based readout system
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CEBAF On-line Data
Acquisition

User’s Manual
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co-da \ 'kod-o\ n [It. lit., tail, fr. L cauda) : a concluding musical
section that is formally distinct from the main structure
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Based upon assumptions in traditional DAQ design

* The data rate from a detector is impossible to capture with an affordable data
acquisition system without a trigger to reduce event rates.

* Even if the untriggered data rate could be captured, it would be impossible to
store.

* Evenifit could be stored the full dataset would represent a data volume that
would require impractically large computing resources to process.

With computing advances Assumptions no longer valid

Limitation in trigger-based readout systems

bias to low-energy particles

do not deal well with event-pileup

not an ideal for complex, general-purpose detectors

3 Jefferson Lab



Alternative readout mode: Streaming

EICUG AIWG Meeting, August 24, 2022.

Traditional trigger-based readout

e data is digitized into buffers

e trigger starts readout

e parts of events are transported to an event builder where they are
assembled into events

e at each stage the flow of data is controlled by back pressure

e data is organized sequentially by events

Streaming readout

e datais read continuously from all channels

» validation checks at source reject noise and suppress empty channels

e data then flows unimpeded in parallel channels to storage or a local
compute resource

e data flow is controlled at source

* datais organized in multiple dimensions by channel and time

e 2
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Streaming Readout: Trigger-less data acquisition

Definition of Streaming Readout
» Data is digitized at a fixed rate with thresholds and zero suppression applied locally.

e Datais read out in continuous parallel streams that are encoded with information about when and where the
data was taken.

* Event building, filtering, monitoring, and other processing is deferred until the data is at rest in tiered storage.

Advantages of Streaming Readout
» simplification of readout (no custom trigger hardware and firmware)

» trigger-less readout:
* beneficial for experiments that are limited by event-pileup or overlapping signals from different events

* beam time is expensive so data mining or taking generic datasets shared between experiments is
becoming popular: loosen triggers to store as much as possible

e opportunity to streamline workflows

* take advantage of other emerging technologies

EICUG AIWG Meeting, August 24, 2022. 5 Jefferson Lab



LHCb Example
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All numbers related to the dataflow are
taken from the LHCb

Upgrade Trigger and Online TDR
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HLT1 challenge: reduce 5 TB/s to 70-200 GB/s in
real-time with high physics efficiency
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Streaming Readout and (near) real-time processing

Data Processor

* assembles the data into events

* outputs data suitable for final analysis
(Analysis data)

Features

* ideal for Al

e autonomous calibration in near real time

e autonomous alignment in near real time

* reconstruction in (near) real time

e event filtering into analysis streams based
on full event information

e autonomous anomaly detection

* responsive detectors (conscious
experiment)

Jefferson Lab


https://indico.jlab.org/event/420/

Streaming Readout test using the CLAS12 forward calorimeter (arXiv:2202.03085)
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Recorded Hit Efficiency Drops to
~99% at 120MHz hit rate using a
single 10Gbps Ethernet Link
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https://arxiv.org/abs/2202.03085

Streaming Readout
The Case For Automation

EICUG AIWG Meeting, August 24, 2022.



In Nuclear Physics we build cathedrals for the proton.

|
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Building and understanding a large-scale experiment is a multi-year project.
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Unfortunately, it can take also a year or longer
to align and calibrate the detector and reconstruct the events.

EICUG AIWG Meeting, August 24, 2022. 11




The important role of alignment and calibration

* Complexity of detectors means that it can take a year or even longer for us to “see” the events. Possible problems we
find in the data a year or later, we cannot fix anymore.

* Also, it can take a year or longer to have the data for the physics analysis ready and start the work on publications.

* Why is this? The experts needed for alignment and calibration are the experts working on keeping the detector
running.

* The way out

Automation
If we have Al/ML to align and calibrate detectors, we can find

problems in data while data taking and start the physics
analysis for the publications now.

EICUG AIWG Meeting, August 24, 2022. 12 Jefferson Lab



Address Challenges of Autonomous Control and Experimentation

|N DRA_ Develop a prototype for a fully automated, responsive
detector system as a first step towards a fully automated,

ASTRA self-conscious experiment.

R&D integrated with streaming readout and Al/ML efforts
at Jefferson Lab

Jefferson Lab
Team * ENP M. Diefenthaler, E. Jastrzembski, H. Szumila-Vance

* CST D. Lawrence, V. Gyurjyan

Old Dominion University

* Applied Numerical Mathematics R. Fang, A. Farhat, Y. Xu
Databricks

e S. Rajamohan

EICUG AIWG Meeting, August 24, 2022. 13 Jefferson Lab



Automated data-quality monitoring and calibrations

“In most challenging data analysis applications, data evolve over time and must be analyzed in near real time.
Patterns and relations in such data often evolve over time, thus, models built for analyzing such data quickly
become obsolete over time. In machine learning and data mining this phenomenon is referred to as concept
drift.” (I. Zliobaité, M. Pechenizkiy, J. Gama , An Overview of Concept Drift Applications)

To deal with time-changing data, one needs strategies, at least, for the following
e detecting when a change occurs
e determining which examples to keep and which to drop

e updating models when significant change is detected

1. Identify different data-taking periods Use ADWIN2 or multi scale
method to identify the start of distinct data-taking periods based on
O U R changes in the mean of the data stream.
2. Calibrate different data-taking periods to a baseline Use Hoeffding’s
AP P ROAC H inequality to estimate the mean of each data-taking period and apply
a constant shift to each data taking period by the difference between
the means of a baseline period and each subsequent period.

EICUG AIWG Meeting, August 24, 2022. 14 J ),f,f.e"rgon Lab


https://doi.org/10.1007/978-3-319-26989-4_4

An example data stream

To represent the data stream we use a sample of

120,000 Inclusive Deep Inelastic Scattering Monte
Carlo events

* generated in the context of the ZEUS experiments
* Includes full detector simulation

 Reconstructed kinematics with all detector
effects.

We observe a stream of x and Q?, reconstructed by
the electron method [3] based on the measurement
of the (x, y, z) position and energy E of the
outgoing lepton in the calorimeter.

We subdivide the stream into 3 data-taking periods
of equal parts and apply a constant shift of two
standard deviations to each (x, y, z) position and
energy E measurements in the second data taking
period.

EICUG AIWG Meeting, August 24, 2022. 15
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An example data stream

ADWIN is an ADaptive WINdowing technique used for detecting distribution changes, concept drift, or
anomalies in data streams with established guarantees on the rates of false positives and false negatives

(A. Bifet and R. Gavalda, Learning from time-changing data with adaptive windowing, in Proceedings of the 2007 SIAM
international conference on data mining, SIAM, 2007, pp. 443-448)

- == data stream

Data Stream with ADWIN —— window length
- 40000
> 50000 - - 35000
N
Data | Start | Time ADWIN 40000 - 30000
Period | Time | Detects Change L 25000 -
30000 - '
2 40000 40020 S - 20000
0000 - - 15000
3 80000 80012 L 10000 -
10000 -
' - 5000
01 -0
0 20000 40000 60000 80000 100000 120000
time
, 2
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An example data stream

A higher-dimensional extension of ADWIN improves its ability to find changes in the data
distribution.

1D vs 2D ADWIN Anomaly Detection

—o— 1D ADWIN
2D ADWIN
Two cases:
104-E
- 1D: only use information from Q2 .
» 2D: use information from (x, Q2) .

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
number of o shift

EICUG AIWG Meeting, August 24, 2022. 17 Jef ffer:son Lab



(standardized)

Q2

Calibrating each data-taking period to baseline period

Automatically identify changes in the

underlying probability distribution Re-calibrate in case of changes Full re-calibration T d?t: St“Tamth
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level of 0.01 and a margin of error of
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the mean in each data-taking period.
. ;
EICUG AIWG Meeting, August 24, 2022. 18 Jeff.e'r:son Lab



TDIS Streaming Readout Prototype Ed Jastrzembski et al.

Tagged Deep Inelastic Scattering (TDIS)

TDIS Streaming Readout Prototype

Module coupling locations

Hall A Super Big-Bite (SBS) ‘ ,"‘f R k/RA ;f A I; ‘
measurement tagging for meson structure via the Sullivan process | il e = —

science goals meson structure functions and PDF |
detection of low momentum spectators GEM based multiple TPC (mTPC),

reduced drift time in mTPC allows for triggered or streaming readout

Target

GEM based readout units Double sided cathode planes

SAMPA novel front-end ASIC developed for streaming readout of GEM
based ALICE TPC
ongoing tests study GEM pulse data and stream continuously
preliminary results stream trigger-less GEM data (768 channels) in DAS
and DSP modes at 45 Gb/s via 5 ALICE front-end cards (FECs)
next steps

e using FELIX hardware and software for read out GEM data

* integrate FELIX hardware and software into CODA

EICUG AIWG Meeting, August 24, 2022. 19 Jeff;gon Lab



Monitoring the TDIS Streaming Readout Prototype
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Multi Scale Method: Various test functions for various changes
*  Represent data in multiscale basis:
* Increase of base coefficients - Change.
*  Transform to coefficient space:
*  OQutliers in the distribution - Change.
*  Detect Changes - Detect outliers using IQR, symbolized in red.
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Streaming Readout
Opportunities at the Electron-lon Collider

EICUG AIWG Meeting, August 24, 2022. 21 Jef ffer:son Lab



The dynamical nature of nuclear matter

Nuclear Matter Interactions and structures are
inextricably mixed up

Ultimate goal Understand how matter at its most
fundamental level is made

EICUG AIWG Meeting, August 24, 2022.

Observed properties such as mass and spin
emerge out of the complex system

1 I 1 I 1
0.4 Rapid acquisition of mass is |
) __ 2ffect of gluon cloud
-~ ,7,/DOI 10.1103/PhysRevC.68.015203 i
0.3 M, = 1000 MeV n
’ — m = 0 (Chiral limit)
%‘ — m =30 MeV
9, - m =70 MeV
202
=
0.1
00 1 2 3

p [GeV]

To reach goal precisely image quarks and gluons
and their interactions
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Advances in Nuclear Physics

Theory of the strong interaction Accelerator technologies
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Steady advances in all of these areas mean that 2>
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EIC: A new frontier in science

Dynamical Fundamental Breakthrough New Sciences,

System Knowns Structure Probes New Frontiers

(Date)
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ih

Universe General Relativity Quantum Gravity, Large Scale Surveys Precision
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Our Vision for Software & Computing at the EIC

Rapid turnaround of data for the physics analysis and to start the work on publications:
* Goal: Analysis-ready data from the DAQ system.

 Compute-detector integration with Al at the DAQ and analysis level.

EIC SOFTWARE:
Statement of Principles

https://eic.github.io/activities/principles.html

Principle 2. We will have an unprecedented compute-detector integration:

* We will have a common software stack for online and offline software, including the processing of streamed data
and its time-ordered structure.

* We aim for autonomous alignment and calibration.

* We aim for a rapid, near-real-time turnaround of the raw data to online and offline productions.

EICUG AIWG Meeting, August 24, 2022. 25 .!gf,f.;gon Lab
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Machine-Detector Interface

Integrated interaction region and detector design to optimize physics reach

The aim is to get ~“100% acceptance for all final state
particles, and measure them with good resolution.

1)| Scattered DIS electron

\
. e _—y

N 2)| Particles
. N

< > associated with
. initial ion

3| Particles
\,\ associated with
struck quark

Experimental challenges:
 Beam elements limit forward acceptance.

e Central Solenoid not effective for forward.

EICUG AIWG Meeting, August 24, 2022.

Electron

lon “ \‘
Beamline \ “\ Beamline
\

Possible to get ~100% acceptance for the whole event:

* Beam crossing angle creates room for forward dipoles.

* Dipoles analyze the forward particles and create space
for detectors in the forward ion and electron direction.

26 J )/ff.;gon Lab



Extend our Vision beyond Machine-Detector Interface

Integration of DAQ, analysis and theory to optimize physics reach

Front End
data
Front End Analysis

Front E
Front-End o SN

Integration of DAQ, analysis and theory

e Research model with seamless data processing from DAQ to data analysis:
* Not about building the best detector,
* But the best detector that fully supports streaming readout and fast algorithms for alignment,
calibration, and reconstruction in near real time.
* For rapid turnaround of data for the physics analysis and to start the work on publications.

EICUG AIWG Meeting, August 24, 2022. 27 Jefferson Lab



. . . Using Examples From Cristiano Fanelli’s Presentation
Autonomous Data Qua"ty MOnItOflng Criticgal Pathpfor Compute-Detector Model for the EIC

. . . T. Britton, D. Lawrence, K. Rajput,
Online Monitoring Tasks: Hydra | anKi 21050754841 [65.CY
e Take off-the-shelf ML technologies and deploy in near real-time monitoring tasks for GlueX in Hall D.

e |t was the online monitoring coordinator’s job to sift through hundreds of images produced in the previous 24 hours, looking
for missed anomalies. This “human-in-the-loop” method was prone to errors.

Hydra was created to tackle these challenges. Hydra is an Al system that leverages Google’s Inception v3 for image
classification.

Last Updated: 14.27 second(s) ago

V= ol = “ — |+ Ry It uses for training the collection of
; ] = e | 2 2 e monitoring plots that GlueX had previously

(e - A eoried

DIRC_occupancy car .  or 125 i o ’ DIRC_North_occupancy
Run Number: 90324 _occupancy _occupancy _occupancy _itrig Run Number: 90324

o e 0720 e e oot e S S S— i et oiog A webpage was created to label the
NoData @ 0.9999 [2021-11-29 074544 2021-11-29 074546 2021-11-29 074547 2021-11-29 07:45:45 Run Number: 90324 NoData @ 0.9999

IGood @ 0.9957 Good @ 0.9896 Good @ 0.9999 Good @ 0.9928 2021-11-29 0744:10 Collected |mages and the entire System |S

— e e = Gmrd@w : driven by a database.
“ . - — 1k ” N . Hydra is able to spot problems missed by
M‘ mJ ” .| " g . humans and has been shown to perform

better than humans at diagnosing problems.

FDC_occupancy BCAL_occupancy
[Run Number: 90324 [Run Number: 90324 RF_TOF_selftiming RF_TAGH_selftiming RF_FDC_selftiming RF_PSC_selftiming
2021-11-29 074545 2021-11-29 074542 Run Number: 90324 Run Number: 90324 Run Number: 90324 Run Number: 90324
lasceeptable @ 0.9861 HotChannel @ 0.9983 2021-11-29 074545 2021-11-29 074545 2021-11-29 074545 2021-11-29 074545

e Large network, ~70% of processing time spent on inference. Techniques are being tested to make Hydra models
interpretable (e.g., Layerwise Relevance Propagation). Plans to deploy Hydra in other experimental halls.

See M. ito and D. Lawrence talks
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. - Using Examples From Cristiano Fanelli’s Presentation
Autonomous Callbratlons Critical Path for Compute-Detector Model for the EIC

See M. Diefenthaler’s talk

Autonomous Control and Experimentation | =~

1. Identify different data-taking periods Use ML for a) online
Approach: change detection and b) online data-quality monitoring
2. Calibrate different data-taking periods to a baseline

Learning how | eyeloped Multi Scale Method:
constant the data is - Represent data in multiscale basis: Increase of base coefficients —
within online Change.
adjustable - Transform to coefficient space: Outliers in the distribution — Change.
thresholds - Detect Changes — Detect outliers using IQR

ADWINZ2 algorithm

Automatically identify changes in the
underlying probability distribution Re-calibrate in case of changes Monitor pedestals and study cosmics

fficient

Q2 (standardized)
@

w&m

4200 4250 4300 4350 4400 4450 4500 4550 4600
bucket

0 20000 40000 60000 80000 100000 12000C O 20000 40000 60000 80000 100000 12000
time time
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- Using Examples From Cristiano Fanelli’s Presentation
Event Reconstruction Critical Path for Compute-Detector Model for the EIC

. Ke ras Q G. Gavalian, et al. arXiv preprint arXiv:2008.12860 (2020).
/ \ I - b a S e d I ra C kl n g I ' G. Gavalian. arXiv preprint arXiv:2009.05144(2020).

Convolutional Neural Network (CNN)

Different Network types were evaluated for accuracy and Autoencoders Training Sample for Auto-Encoder
speed. MLP is chosen to be the best fit, due to are typically
implementation simplicity, accuracy and inference speed used for
de-noising, but
Features| TP FP PA TA can be used for

Multi-Layer Perceptron (MLP)
@

100% | 6.14% | 100% | 100% fixing glitches

99.96% (10.77% | 98.88% | 99.65%

; ) ) ] TP - True Positive
Recurrent Neural Network (RNN) 96.11% [28.11% | 94.26% |94.26% . FP - False Positive

g?j B (:P ? (:P ? TA - Training Accuracy

é é é—‘é 88.40% 11.60% - - PA - Positive Accuracy

@ Conventional Tracking
@ Alassisted Tracking

Al track classification and segment recovery network was implemented as a CLARA | L st
service. Tracking code was modified to separate clustering from track finding.

Al Track Finder

_‘
=)

DC Clustering
(Hit Based Clustering)

o

Conventional

Track Finder See N. Baltzell talk

Tracking Efficiency

o
o

The implementation of Al assisted tracking into the CLAS12 reconstruction workflow and f=1.00+-0.0022x
provided a 6 times code speedup. =1 B0
Implemented neural network was able to reliably reconstruct missing segment positions with 0
accuracy of =0.35 wires, and lead to recovery of missing tracks with accuracy of >99.8%. 0 10 20 30 40 50 €0 70

Beam Current (nA)

o
~
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- Using Examples From Cristiano Fanelli’s Presentation
Reconstruction Of DIS event Critical Path for Compute-Detector Model for the EIC

Deeply Learning Deep Inelastic Scattering |

M. Diefenthaler, et al. "Deeply Learning Deep Inelastic
Scattering Kinematics." arXiv:2108.11638(2021).

Use of DNN to reconstruct the kinematic
observables Q? and x in the study of neutral
Zhr/wED current DIS events at the ZEUS experiment at
HP) HERA.

Hadron
remnant

The performance of DNN-based reconstruction
@ Simulated ovents of DIS kinematics is compared to the
performance of the electron method, the
pd : Jacquet-Blondel method, and the double-angle
, B 6 methods using data-sets independent from
i those used for the training

A
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. 10g Tre

Compared to the classical reconstruction S
methods, the DNN-based approach enables

significant improvements in the resolution of Q2 .

and x S
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Future Trends in Nuclear Physics Computing

FUTU RE TREN DS ‘ N | \' \ ;;- Donald Geesaman (ANL, former NSAC Chair) “It will be
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One path: Sharing event-level data early, comparing
experiment and theory at the event level

Martin Savage (INT) “The next decade will be looked back upon as
a truly astonishing period in Nuclear Physics and in our
understanding of fundamental aspects of nature. This will be
made possible by advances in scientific computing and in how
the Nuclear Physics community organizes and collaborates, and
how DOE and NSF supports this, to take full advantage of these
advances.”

How the NP community organizes and collaborates: The
AIWG / AI4EIC community is a vital part of that. Al/ML is
a tremendous opportunity and we can make a

3, difference. J)g_f;gon Lab


https://www.jlab.org/FTNPC

Over the last decade remarkable advances in electronics,
computing, and software changed assumptions.

New possibilities and paradigms

e Streaming readout and Al/ML for rapid turnaround of
data and starting the work on publications.

Al/ML for streaming readout

* Autonomous control and experimentation
e Autonomous alignment and calibration in near real
time
e Autonomous anomaly detection in near real time
e Reconstruction in near real time
e Physics analysis in near real time

* Self-conscious detectors

2
Jefferson Lab

mdiefent@jlab.org
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