TTL detector performance studies - follow-up -

EPIC TOF Meeting August 8, 2022

Nicolas Schmidt

Reminder: ECCE-style TTL Layers in Geant4

Support:

Layer	material	thickness
Top plate air gap bottom plate cooling	aluminum air aluminum aluminum	1mm 5mm 1mm 5mm diam. tube 1mm wall

Services:

Layer	material	thickness	Laye
Thermal pad	graphite	0.25mm	The
High Speed Board	polystyrene	Imm	AIN
Power board	polystyrene	3.1 mm	Lair
			RO
			Solo
			Sen
			Ene

Sensor:

Layer	material	thickness
Thermal pad	graphite	0.25mm
AIN	AIN	0.79mm
Laird Film	graphite	0.08mm
ROC	plastic	0.25mm
Solder (Tin)	tin	0.03mm
Sensor	silicium	0.3mm
Epoxy	ероху	0.08mm
AIN	AIN	0.51mm

• Material budget $\sim 8\% X/X_0$ dominated by AI plates \rightarrow cooling pipes with substantial material

More infos in CMS ETL TDR [[Link]]

N. Schmidt (ORNL)

Reminder: ECCE-style TTL Laye

- Barrel made of 12 modules in azimuth and multiple modules along *z*-axis
- Forward layers mounted on both sides of large disk
- AC-LGAD pixel sensors with 500 μ m pitch \rightarrow 30 μ m position resolution

Reminder: ATHENA-style barrel TOF (DD4hep)

- $\bullet \ \ {\sf Material \ budget} \sim 1\% X/X_0$
- ATHENA design placed at $R \sim$ 52.5cm
- ${\small \odot}~$ Strip AC-LGAD with 0.5 \times 10mm pitch
- Full coverage in φ , 98% coverage in z

N. Schmidt (ORNL)

FPIC

FYPERIMENT

nhi

NEW: ATHENA-style barrel TOF (Fun4All)

- Material budget $\sim 1.2\%$ X/X₀
 - \rightarrow C-foam (honeycomb) density 0.09(0.03) g/cm³
 - \rightarrow cooling with significant material
- Detector placed at $R \sim 64$ cm
- Detector length $\sim 2.8 \text{m} \rightarrow \approx 11 \text{m}^2$ of sensors

DET1 simulation

Momentum resolution - Different Detectors

now with lower $|\eta|$ bins!

- Comparison between CTTL and ATHENA TOF detector design
 - \rightarrow slight improvement of tracking performance
 - \rightarrow possibly due to all sensors being in front of support material
- Comparison to TTL layers being excluded from Kalman filter
 - \rightarrow important tracking constraints in barrel and forward
 - \rightarrow surprisingly low impact in backward direction

- Clear improvement of tracking efficiency with TTL, especially at high $|\eta|$
- Overall low efficiency for p < 1GeV in fwd/bwd

Momentum resolution - Different Sensors

now with lower $|\eta|$ bins!

- Studies performed via Kalman filter adjustments
 - \rightarrow Forward/backward sensor resolution changed in φ and R
 - ightarrow Barrel sensor resolution changed in arphi and z
- Momentum resolution appears unaffected by AC-LGAD pitch \rightarrow strip sensors (also with larger pitch in φ) can be used

Momentum resolution - Different Material

now with lower $|\eta|$ bins!

• Material of TTL layer with small/negliglible impact on tracking resolution \rightarrow however, ECal performance might depend on low material budget

Calorimeter resolution - TTL Material

■ Negligible impact of TTL material to calorimeter resolution in all directions → allows for more freedom with supports and cooling as tracking performance is similarly unaffected by material

Conclusions

- ATHENA-style barrel design implemented in Fun4All
 - \rightarrow material, cooling and support to be further evaluated
- TTL layers have significant impact on momentum resolution in barrel and forward \rightarrow not that sensitive to sensor pitch in φ direction
- $\bullet\,$ Small effect from TTL layer material variations on tracking performance $\to\,$ but calorimeters would benefit from less material
- TTL layers provide crucial information for Cherenkov detectors
 - \rightarrow position and angle constraints at entrance of detector
 - \rightarrow significantly worse position resolution without TTL hits

Backup

Performance studies in today's meeting

spatial resolution of sensors

- 1) Ideal 30*30 μ m
- 2) Barrel: $30\mu m$ along r*phi, while 3 mm/ $\sqrt{12}$, 1cm/ $\sqrt{12}$, or 3 cm/ $\sqrt{12}$ in Z
- 3) Endcap: 30 μ m along phi, while 3 mm/ $\sqrt{12}$, 1cm/ $\sqrt{12}$, or 3 cm/ $\sqrt{12}$ in R

• timing resolution of sensors (see presentation by Friederike next week)

- 1) 25 ps (Default ECCE design)
- 2) variations: 30 ps, 35 ps, 40 ps, 50 ps

material budget

- 1.a) Default (${\sim}7.5\% X_0$ based on ECCE)
- 1.b) ${\sim}3.75\% X_0$ (half thickness of ECCE design)
- 1.c) ${\sim}15\% X_0$ (twice thickness of ECCE design)
- 2.a) ${\sim}1\%X_0$ based on ATHENA design
- 2.b) ${\sim}2\% X_0$ (twice of ATHENA design)

ATHENA-style barrel TOF in Det1 (Fun4All)

TTL disk design

N. Schmidt (ORNL)

TOF TTL studies

August 8, 2022 13 / 13

DIRC frame in barrel

- ${\mbox{\circle*{1.5}}}$ Currently only stepping files of this frame exist (sent around by Tanja) ${\mbox{\rightarrow}}$ porting to Fun4All needed
- Frame allows to mount modules on various radial positions
- Considered material is steel at the moment \rightarrow significant material budget in certain regions

New Layers in Geant4 - 3

